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Abstract

The purpose of this work is to describe some fundamental properties of
Hanamura’s cohomological Chow groups. In the singular case, we estab-
lish an analogue of Voevodsky’s comparison theorem between Hanamura’s
motivic cohomology and Friedlander–Voevodsky’s motivic cohomology. Us-
ing this identification and the Kerr–Lewis–Müller-Stach construction (KLM-
formula), we construct a regulator for singular (quasi-projective) varieties,
from motivic cohomology to absolute Hodge cohomology. The procedure is
via cubical hyperresolutions X• → X of Guillén–Navarro–Pascual–Puerta.

In the end, we do some explicit calculations of motivic cohomology, using
Hanamura’s spectral sequence. If we consider varieties of dimension three
with smooth singular locus, this reduces the calculations to the normal cross-
ing divisor. Then we consider varieties of higher dimensions, with the same
conditions as for the previous varieties.
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Alguien dijo:
-¡...ámonos!
Los tres novilleros echaron a caminar, al frente de sus
cuadrillas. A mitad del ruedo Luis Ortega se des-
cubrió, por ser el debutante.
En ese momento, dominando la ovación y el pa-
sodoble, el tiempo golpeó cuatro veces en la campana
del reloj de la Plaza México.
¡¡ La hora !!
Y Luis Ortega pońıa ya el primer paso en el misterio.

Luis Spota, “Más cornadas da el hambre” (1950)
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Introduction

The category of mixed motives MM(k) is conjecturally described by
A. Beilinson [Bei87] and P. Deligne, as a tensor abelian category which
contains to Grothendieck’s category of pure motives as the full subcategory
of semi-simple objects, in analogy with the mixed Hodge structures [HodgeI],
[HodgeII] and [HodgeIII]. One expected important property is the existence
of a Bloch-Ogus cohomology theory for smooth schemes:

Hp
M

(
X,Z(q)

)
:= ExtpMM(k)

(
Z(0),M(X)⊗ Z(q)

)
with Chern classes from algebraic K-theory:

cq,p : K2q−p(X)→ Hp
M

(
X,Z(q)

)
which induce an isomorphism:

K2q−p(X)(q) ∼= Hp
M

(
X,Z(q)

)
⊗Q,

where K∗(−)(q) is the weight eigenspace of the Adams operations.
The original idea of motivic cohomology as a universal cohomology

theory for algebraic varieties is due to A. Grothendieck. This should be a
theory that plays the same role in algebraic geometry as singular cohomology
in algebraic topology. A. Beilinson [Bei87] and S. Lichtenbaum [Lic84] con-
jectured, independently, that integral motivic cohomology can be computed
as the hypercohomology of adequate complexes Z(q) on Zariski and étale site
on X in the derived category, respectively. As in algebraic topology, Beilin-
son suggests the existence of an “Atiyah-Hirzebruch spectral sequence” for
smooth schemes of the form

Ep,q2 = Hp−q
Zar (X,Z(−q))⇒ K−p−q(X)

converging to Quillen’s algebraic K-theory whose E2-term is motivic coho-
mology. For the properties we refer to [Bei87] and [Lic84].

xi
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0.1 Absolute motivic cohomology. The first approximation to motivic
cohomology is via K-theory. Guided by the relationship between K-theory
and singular cohomology in the topological case, Beilinson [Bei84] defines,
for a quasi-projective variety X over C its rational motivic cohomology as

Hq
mot(X,Q(n)) := K2n−q(X)(n) ⊗Q (1)

the subspace of weight n for Adams operations of a situable K-group of X.
Moreover, for a regular complex projective variety X, Beilinson constructed
a regulator morphism to the Deligne cohomology of X:

regB : Hq
mot(X,Q(n))→ Hq

D(X,Z(n))→ Hq
D(X,R(n));

with applications to special values of L-functions of Grothendieck’s motives.

0.2 Higher Chow groups. In the spirit of singular cohomology and in
terms of algebraic cycles, S. Bloch [Blo86a] has another approach to motivic
cohomology. Bloch’s cycle complexes are complexes of sheaves in the Zariski
topology. Let Zr(X,m) be the subgroup of Zr(X ×∆m) generated by the
cycles meeting all the faces properly, where ∆m = Spec

{
k[t0, . . . , tm]/(1 −∑m

j=0 tj)
}

is the algebraic simplex. The assignment m 7→ Zr(X,m) defines
a simplicial abelian group Zr∆(X, •). The higher Chow groups are defined as

CHr(X,m) := Hm(Zr∆(X, •)).

These groups generalize the classical Chow groups CHr(X, 0) = CHr(X),
cycles of codimension r on X modulo rational equivalence. Tensoring with
Q, Bloch proves the following identification:

CHr(X,m)⊗Q ∼= Km(X)
(r)
Q ,

where Km(X)
(r)
Q is the subspace of weight r (for Adams operations) in

the rational Quillen K-theory of X. This generalizes the classical result

of Grothendieck identifying CHr(X) ⊗ Q ∼= K0(X)
(r)
Q . Furthermore, it re-

covers the original definition of Beilinson (1). Then, higher Chow groups
are also natural candidates for motivic cohomology. There are several recent
approaches to motivic cohomology, many of them in terms of algebraic cy-
cles, among which Friedlander-Voevodsky [FV00], Hanamura [Han00], and
Voevodsky [MVW06]. In this direction, Voevodsky proved a fundamental
result: Bloch’s higher Chow groups are isomorphic to motivic cohomology
in the smooth case, for a field k that admits resolution of singularities.
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Theorem 0.0.1 [MVW06, Theorem 19.1] Let X ∈ Sm(k). Then motivic
cohomology coincides with higher Chow groups

CHr(X,m) ∼= H2r−m
M (X,Z(r)) = HomDMgm(k)(M(X),Z(r)[2r −m]),

where DMgm(k) is the Voevodsky’s triangulated category of mixed motives.
In particular, for m = 0, we recover the fact that CHr(X) = H2r

M (X,Z(r)).

0.3 Regulators. Motivic cohomology is related to other theories of ab-
solute cohomologies via regulators. The term “regulator” comes from the
relationship that these morphisms have with the Borel and Beilinson-Bloch
regulators [Bei84]. The regulator of a number field F is a morphism

RF : O∗F = K1(OF )→ Rr1+r2−1

used by Dirichlet in his study of the units of the ring of integers of a number
field. The class number formula is a result proved by Dirichlet that relates
all the important numerical invariants of the number field to the covolume
of the regulator RF . Borel (Bloch-Beilinson) regulator is the higher dimen-
sional analogue of the Dirichlet regulator, considered as a morphism from
algebraic K-theory to some theory of absolute cohomology.

0.4 Absolute Hodge cohomology. Another main ingredient in the con-
struction of the regulator morphism (and Beilinson’s conjectures) is the ab-
solute Hodge cohomology. This is defined in terms of a mixed Hodge complex
[Bei86] and [HodgeIII]. In fact, the constructions of Deligne cohomology and
homology are also given in terms of mixed Hodge complexes. An A-mixed
Hodge complex K•H is given by a diagram in the derived category:

K•A
α−→ (K•A⊗Q,W )

β−→ (K•C,W, F )

and the absolute Hodge cohomology is given by

RΓH(K•) := Cone•
(
K•A⊕Ŵ0K

•
A⊗Q⊕(Ŵ0∩F 0)K•C → ′K•A⊗Q⊕Ŵ0

′K•C
)
[−1]

where Ŵ is the Deligne décalage filtration. According to Deligne [HodgeIII],
there is a mixed Hodge complex associated to a smooth complex algebraic
variety (to smooth simplicial varieties or posiblly singular complex algebraic
varieties). An important result by Deligne [HodgeIII, 8.1.9], is that the
cohomology of a mixed Hodge complex defines a mixed Hodge structure. In
[Blo86b], Bloch constructed for X smooth, a cycle-class morphism

clq,n : CHq(X,n)→ H2q−n
D (X,Z(q))
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where H2q−n
D (X,Z(q)) is the Deligne-Beilinson cohomology. A. Goncharov

[Gon95] and [Gon02] suggests that the regulator morphism should be in-
duced by an explicitly defined morphism between these complexes. The
KLM-formula is a morphism of complexes inducing the Bloch-Beilinson
regulator morphism with rational coefficients. Kerr, Lewis and Müller-Stach
[KLM06] gave such a morphism, using a cubical variant of Bloch’s higher
Chow groups to compute motivic cohomology, and a 3-term-complex to
compute Deligne-Beilinson cohomology:

Theorem 0.0.2 [KLM06, 5.5] There is a morphism of complexes

regX : ZpR(X, •)→ C2p+•
D (X,Q(p)),

where the inclusion Z
p
R(X, •) ↪→ Zp(X, •) is a quasi-isomorphism.

The regulator is given in terms of integration of currents and describes
the Bloch’s cycle-morphism, further generalizing the Griffiths’s Abel-Jacobi
morphism.

0.5 Hodge realizations. On the other hand, if MHCp is the category
of mixed Hodge complexes with polarizable cohomology [Bei86], there is a
realization functor:

DMgm(k)→ Db(MHSp)

from the category of geometric motives. This functor induces cycle class
morphism. In [KL07], the authors generalize the Bloch’s cycle class mor-
phism to smooth quasi-projective varieties. In this generalization, Deligne
cohomology is replaced by the absolute Hodge cohomology H∗H which in-
cludes weights, and the regulator is the absolute Hodge cycle-class morphism

clH : CHp(X,n)→ H2p−n
H (X,Q(p)).

Moreover, for a complete normal crossing divisor Y ⊂ X, they define an
Abel-Jacobi morphism

H2p−n
M (Y,Q(p))→ H2p−n

H (Y,Q(p))

where the motivic cohomology of Y is computed by semi-simplicial hyper-
resolutions in the spirit of Guillen-Navarro-Pascual-Puerta [GNPP88]. This
suggested that the KLM-formula can be extended to smooth simplicial va-
rieties, o more generally, to singular varieties, using semi-simplicial hyper-
resolutions of varieties over the complex numbers.
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Motivic cohomology and regulators for singular varieties

In the case of singular varieties, the higher Chow groups fail as motivic
cohomology, as these form a motivic Borel-Moore homology theory (as in
algebraic topology). In this case, pull-backs behave better for motivic co-
homology than for higher Chow groups. However, much of the construction
used in the case of normal crossing divisors extends to singular varieties,
such as motivic cohomology, absolute Hodge cohomology, regulators and
Abel-Jacobi morphisms extend directly using simplicial hypercovers.

0.6 Hanamura’s motivic cohomology. Using the extension criterion
of Guillén-Navarro [GNA02], Hanamura [Han00] extends the definition of
motivic cohomology to the case of singular varieties, and other theories
starting from higher Chow groups. This is a contravariant functor from
quasi-projective varieties to abelian groups

X 7→ CHCr(X,m);

which coincides with CHr(X,m) for X smooth. The procedure is via cubi-
cal hyperresolutions (analogous to Deligne hypercoverings) [GNPP88]. For
a singular quasi-projective variety X, consider its cubical hyperresolution
a : X• → X. This is a semi-simplicial scheme of the form

· · · X2 X1 X0 X
d2

d1

d0

d1

d0

a

consisting of smooth quasi-projective varieties Xp, with an augmentation a
to X, satisfying certain conditions with the face morphisms. The cubical
hyperresolution has the property that the cohomology of X can be computed
by the cohomology of X•, the cohomological descent property. Applying the
technique of Bloch’s cycle complex to hyperresolutions, we obtain a double
complex

0 −→ Zr(X0, •)
d−→ Zr(X1, •)

d−→ · · · d−→ Zr(Xp, •) −→ · · ·

where Zr(Xp, •) is the Bloch’s cycle complex of Xp, and the (horizontal)
differentials are given by d =

∑
(−1)id∗i . Let Zr(X•)

∗ be its total complex.
Hanamura’s motivic cohomology is defined as:

CHCr(X,m) = Hm

(
Zr(X•)

∗).
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The definition is independent, up to isomorphism, of the choice of hyperres-
olution. Naturally there is a spectral sequence associated with this double
complex, the Hanamura spectral sequence

Ep,q1 (r) := CHr(Xp,−q)⇒ CHCr(X, p− q).

Many of the properties for smooth varieties can be inherited to singular
varieties, such as homotopy invariance, Mayer-Vietoris, etc. The motivic
cohomology of Friedlander-Voevodsky of a singular variety is defined in
terms of Suslin-Friedlander motivic complex, using the cdh-hypercohomology
[FV00]. An important result is that Hanamura’s motivic cohomology agrees
with the motivic cohomology of Friedlander-Voevodsky, as suggested by
Hanamura in [Han14]:

Theorem 0.0.3 Let X be a quasi-projective variety over a field k that ad-
mits resolution of singularities. Then, there exists an isomorphism

CHCr(X,m) ∼= H2r−m
M (X,Q(r)),

where H2r−m
M (X,Q(r)) is Friedlander-Voevodsky motivic cohomology.

The reason for this isomorphism is that for smooth varieties, there is
a quasi-isomorphism ZSF (r)[2r] → Zr(− × Ar, •) of complexes of Zariski
sheaves between Suslin-Friedlander complex and Bloch’s cycle complex, see
[MVW06, Theo. 19.8], and using spectral sequences and cdh-descent for
motivic cohomology.

0.7 A regulator morphism for Hanamura’s motivic cohomology.
As noted by Kerr and Lewis, the regulator morphism admits an extension
to Hanamura groups for an arbitrary variety. The model given by the cy-
cle class morphism for a normal crossing divisor, allows to extend the gen-
eral construction of the regulator morphism from Hanamura’s cohomological
Chow groups (motivic cohomology) to absolute Hodge cohomology:

Theorem 0.0.4 There is a morphism of (double) complexes in the derived
category Zp,q(r) → Hp,q(r) given by the KLM-formula, with a morphism
of total complexes Zr(X•)

∗ → HX•(r). This regulator morphism induces a
cycle-class morphism on the total cohomologies

H2r−∗
M (X,Q(r)) ∼= CHCr(X, ∗)→ H2r−∗

H (X,Q(r)).

Such a morphism coincides, when X is smooth, with the KLM-regulator.
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The main idea is to use a cubical hyperresolution X• → X to define the
complexes that give us both cohomologies, and then use the KLM formula in
the smooth case. This morphism generalizes the Bloch cycle-class morphism.

Outline of the work

In the first chapter, we give an overview of the cohomological machinery, nec-
essary for the following chapters. We recall the notion of spectral sequences,
important to define a mixed Hodge structure on a complex algebraic variety.
We also review the definitions of Deligne cohomology and homology, impor-
tant for defining the regulator morphism and the Abel-Jacobi morphism.

In Chapter 2, we recall the construction of the Abel-Jacobi morphism
(KLM-formula). This is a morphism form higher Chow groups (motivic co-
homology) to Deligne cohomology, in the smooth and projective case. This is
a morphism from higher Chow groups to Deligne cohomology, given in terms
of an explicit morphism between complexes that define such cohomologies.
In the smooth and quasi-projective case, we substitute the Deligne cohomol-
ogy with the absolute Hodge cohomology.

In the chapter 3, we review two definitions of motivic cohomology for
singular varieties. The first, Hanamura’s motivic cohomology, given in terms
of cubical hyperresolutions. The other, Friedlander-Voevodsky motivic co-
homology, given as a cdh-cohomology. Using the descent criterion for the
cdh-topology and induction in the length of the cubical hyperresolution, we
establish an isomorphism of comparison between such cohomologies.

In the chapter 4, we define the mixed Hodge complex associate to a sin-
gular quasi-projective variety, and then we consider its associated absolute
Hodge cohomology. In this case, the regulator morphism is given in terms of
the complexes that define the cohomology groups. The theorem (4.3.1) gives
a morphism between spectral sequences, this is the regulator morphism in
the singular case.

In the last chapter, we give some calculations of motivic cohomology
using Hanamura’s technique, for some special cases.
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Chapter 1

Cohomological preliminaries

Let A be an abelian category. A (cohomological) complex is a sequence of
objects Ai ∈ A together with differentials di : Ai → Ai+1 such that the com-
position di+1 ◦di = 0 for all i ∈ Z. The category of complexes is denoted
by C(A). We write C+(A), C−(A) and Cb(A) for the full subcategories
of complexes bounded below, bounded above and bounded respectively. If
A• ∈ C(A) is a complex, we define the shifted complex A•[q] with

A•[q]i = Ai+q and diA•[q] = (−1)qdi+qA• .

If f : (A•, d) → (B•, d) is a morphism of complexes, the cone complex is
defined by the formula

Cone(A•
f→ B•) := A•[1]⊕B•,

together with the differentials

diCone(f) : Ai+1 ⊕Bi → Ai+2 ⊕Bi+1

(a, b) 7→
(
− di+1

A (a), f i+1(a) + diB(b)
)
.

This gives a short exact sequence

0→ B• → Cone•(f)→ A•[1]→ 0.

Denote by K(A) the corresponding homotopy category where the ob-
jects are the same and the morphisms are homotopy classes of morphisms
of complexes. This category is always triangulated with translation func-
tor [1] : K(A) → K(A), and the class of distinguished triangles are those
homotopy equivalent to the standard distinguished triangle

A•
f→ B• → Cone•(f)→ A•[1]

1



2 The total complex and filtrations

for some morphism of complexes f . Let D(A) be the induced derived cat-
egory, where the objects are the same as in K(A) and morphisms are ob-
tained by localising K(A) with respect to the class of quasi-isomorphisms1.
The derived category is also triangulated where the class of distinguished
triangles are those isomorphic in D(A) to a distinguished triangle in K(A).

1.1. The total complex and filtrations

Let A be an additive category. A double complex (A•,•, d•,•1 , d•,•2 ) ∈ C(A)
is a diagram of objects Ap,q ∈ A for p, q ∈ Z with two differentials

dp,q1 : Ap,q → Ap+1,q and dp,q2 : Ap,q → Ap,q+1

where (A•,q, d•,q1 ) and (Ap,•, dp,•2 ) are complexes, and the squares

...
...

...

· · · Ap−1,q+1 Ap,q+1 Ap+1,q+1 · · ·

· · · Ap−1,q Ap,q Ap+1,q · · ·

· · · Ap−1,q−1 Ap,q−1 Ap+1,q−1 · · ·

...
...

...

dp,q+1
1

dp,q1

dp,q2 dp+1,q
2

commute for all p, q ∈ Z, i.e. dp+1,q
2 ◦ dp,q1 = dp,q+1

1 ◦ dp,q2 (there is an-
other version of the double complex with the property that squares are
anti-commutative, i.e. dp+1,q

2 ◦ dp,q1 + dp,q+1
1 ◦ dp,q2 = 0, in some contexts this

convention is better, as we will see below). The associated total complex
(or simple complex) Tot(A•,•) is defined as

Tot(A•,•)n =
⊕
p+q=n

Ap,q and dnTot(A•,•) =
∑
p+q=n

(
dp,q2 + (−1)qdp,q1

)
.

1In an abelian category A, a morphism of complexes f• : A• → B• is called quasi-
isomorphism if Hq(f) : Hq(A•)→ Hq(B•) is an isomorphism for all q ∈ Z.
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In this case, we have the identity dn+1
Tot ◦dnTot = 0. For a triple complex A•,•,•,

the associated total complex is the complex with terms

Tot(A•,•,•)n =
⊕

p+q+r=n

Ap,q,r

with differential

dnTot(A•,•,•) =
∑

p+q+r=n

(
dp,q,r1 + (−1)pdp,q,r2 + (−1)p+qdp,q,r3

)
.

With this definition, it is easy to see that:

Tot(A•,•,•) = Tot(Tot1,2(A•,•,•)) = Tot(Tot2,3(A•,•,•)).

This means that we can either first combine the first two variables and then
combine the sum of those with the last, or we can first combine the last two
variables and then combine the first with the sum of the last two.

Example 1.1.1 The construction of the cone complex is a special case of
the total complex of a double complex given by a morphism of complexes.
Let h : A• → B• be a morphism, we define the double complex C•,• by

B• C•,(0) : B0,(0) B1,(0) B2,(0) · · ·

A• C•,(−1) : A0,(−1) A1,(−1) A2,(−1) · · ·

h h•,−1 h0,−1 h1,−1 h2,−1

Then, the cone complex of h is Cone•(h) = Tot(C•,•).

Notation. For simplicity, we will use s(A•,•) to denote the total complex
(or simple complex) of A•,•, instead of Tot(A•,•).

1.1.2 Let A• be a complex in an additive category A:

1. The trivial filtration σ≥pA• is a decreasing filtration given by

σ≥pA• := A•≥p := {0→ 0→ · · · → 0→ Ap → Ap+1 → · · · }.

The quotient A•/σ≥pA• is given by

σ<pA• := A•<p := {· · · → Ap−2 → Ap−1 → 0→ 0→ · · · }.



4 Spectral sequences of filtered complexes

The p-graded piece is GrpσA
• = Ap[−p] in degree p and zero elsewhere.

2. The canonical filtration τ≤pA
• is an increasing filtration

τ≤pA
• := {· · · → Ap−2 → Ap−1 → ker(dp)→ 0→ · · · }

such that the quotient A•/τ≤pA
• is given by

τ>pA
• := {· · · → 0→ Ap/ker(dp)→ Ap+1 → · · · }.

The p-graded piece of the filtration is the complex

τ≤pA
•/τ≤p−1A

• := {0→ Ap−1/ker(dp−1)→ ker(dp)→ 0}

quasi-isomorphic to the complexHp(A•) in degree p, i.e. GrτpA
• ∼= Hp(A•)[−p].

1.2. Spectral sequences of filtered complexes

In order to construct spectral sequences, filtrations on complexes are impor-
tant. Spectral sequences are a powerful tool for working with cohomology.
This technique permits to endow with a mixed Hodge structure the coho-
mology groups, such that each page carries a natural pure Hodge structure
of certain weight and all diferentials between pages are morphisms of Hodge
structures [HodgeII], [GH78]. Let A be an abelian category.

Definition 1.2.1 Let (A•, d) = {A0 d−→ A1 d−→ A2 d−→ · · · } be a bounded
complex in A. A decreasing filtered complex2, is a family of subcom-
plexes of (A•, d) denoted by:

A• = F 0A• ⊃ F 1A• ⊃ · · · ⊃ FNA• ⊃ FN+1A• = {0}.

The associated graded complex to a filtered complex (F νA•, d) is:

GrFA
• =

⊕
ν≥0

GrνFA
• =

⊕
ν≥0

F νA•

F ν+1A•

with the induced differentials. The filtration F ν also induces a filtration
F νH∗(A•) on the cohomology via:

F νHp(A•) := F νApd−closed / F
ν ∩ dAp−1.

2In the same way, a increasing filtration W• on A• is a family of subcomplexes of
A• with · · · ⊂Wp−1A

• ⊂WpA
• ⊂Wp+1A

• ⊂ · · · . We use the notation F • for decreasing
filtrations, and W• for increasing filtrations.
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This gives

Hp(A•) = F 0Hp(A•) ⊃ F 1Hp(A•) ⊃ · · · ⊃ F νHp(A•) ⊃ F ν+1Hp(A•) ⊃ · · ·

The associated graded cohomology is

GrFH
∗(A•) =

⊕
ν,p≥0

GrνFH
p(A•) =

⊕
ν,p≥0

F νHp(A•)

F ν+1Hp(A•)
.

Denote by C+(FA) the category of bounded below filtered complexes on
A. An object in this category is of the form (A•, F ) with F a filtration on
A•, and a morphism of filtered complexes f : (A•, F ) → (B•, F ) is a
morphism of complexes f : A• → B• such that f(F pA•) ⊂ F pB•. If F is a
decreasing filtration (resp. W an increasing filtration), a shifted filtration
F [n] by an integer n is defined as

(F [n])pA = F p+nA, (W [n])pA = Wp−nA.

To define spectral sequences we consider decreasing filtrations; statements
for increasing filtrations are deduced by the change of indices W• := F−•.
We say that a filtration is finite if there exist integers m > n with Fm = 0
and Fn = A•. The filtration F • is biregular if it is a finite filtration on
each component of A•. The filtrations that we will consider will always
be biregular. Given a filtered complex, the filtrations give us a way to
approximate its cohomology. The principal aim of spectral sequences is to
compute GrpFH

∗(A•).

Definition 1.2.2 A spectral sequence is a sequence {Er, dr}r≥0 of bi-
graded groups

Er =
⊕
p,q≥0

Ep,qr

together with differentials

dr : Ep,qr → Ep+r,q−r+1
r , dp+r,q−r+1

r ◦ dp,qr = 0

such that H∗(Er) = Er+1.

Proposition 1.2.3 ([GH78]) Let (A•, d, F •) be a filtered complex. Then
there exists a spectral sequence {Er} with

Ep,q0 =
F pAp+q

F p+1Ap+q
=: GrpFA

p+q,

Ep,q1 = Hp+q(GrpFA
•),

Ep,q∞ = GrpF
(
Hp+q(A•)

)
.
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The last statement is usually written: Ep,qr ⇒ Hp+q(A•), and we say that
the spectral sequence converges to H∗(A•).

Proof. The Ep,q0 term has been defined:

Ep,q−1
0 Ep,q0 Ep,q+1

0

F pAp+q−1

F p+1Ap+q−1
F pAp+q

F p+1Ap+q
F pAp+q+1

F p+1Ap+q+1

dp,q−1
0 dp,q0

d d

where d0 is induced by d. By definition, Ep,q1 is the cohomology of Ep,q0 :

Ep,q1 =
Ker(dp,q0 )

Im(dp,q−1
0 )

=
{a ∈ F pAp+q | d(a) ∈ F p+1Ap+q+1}

d(F pAp+q−1) + F p+1Ap+q

= Hp+q

(
F pA•

F p+1A•

)
= Hp+q(GrpFA

•).

The differentials in the Ep,q1 term are given by

Ep−1,q
1

{a∈F p−1Ap+q−1 | d(a)∈F pAp+q}
{d(F p−1Ap+q−2)+F pAp+q−1}

Ep,q1
{a∈F pAp+q | d(a)∈F p+1Ap+q+1}
{d(F pAp+q−1)+F p+1Ap+q}

Ep+1,q
1

{a∈F p+1Ap+q+1 | d(a)∈F p+2Ap+q+2}
{d(F p+1Ap+q)+F p+2Ap+q+1}

dp−1,q
1 d

dp,q1 d

Then, the term Ep,q2 is:

Ep,q2 :=
Ker(dp,q1 )

Im(dp−1,q
1 )

=
{a ∈ F pAp+q | d(a) ∈ F p+2Ap+q+1}

d(F p−1Ap+q−1) + F p+1Ap+q
.

In general, we define the term Ep,qr with its differential:

Ep,qr := {a∈F pAp+q | d(a)∈F p+rAp+q+1}
d(F p−r+1Ap+q−1)+F p+1Ap+q

Ep+r,q−r+1
r := {a∈F p+rAp+q+1 | d(a)∈F p+2r+1Ap+q+2}

d(F pAp+q)+F p+r+1Ap+q+1 .

dp,qr
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For r sufficiently large

Ep,qr = Ep,q∞ =
{a ∈ F pAp+q | d(a) = 0}
d(Ap+q−1) + F p+1Ap+q

=
F pHp+q(A•)

F p+1Hp+q(A•)

=: GrpFH
p+q(A•).

A similar computation gives us that H∗(Ep,qr ) ∼= Ep,qr+1. �

Remark 1.2.4 The sum of Er’s is commonly called the r-th page. Then,
each dr is a morphism on the r-th page of the spectral sequence. Although
in this work we always consider spectral sequences of (filtered) complexes,
all the definitions make sense in any abelian category.

Example 1.2.5 One of the principal examples is the spectral sequence as-
sociated to a (bounded) double complex

A•,• =
⊕
p,q≥0

Ap,q, d : Ap,q → Ap+1,q, δ : Ap,q → Ap,q+1,

with d2 = δ2 = 0 and dδ + δd = 0 (a double complex with anticommutative
squares). For simplicity suppose that A•,• is first quadrant, i.e. Ap,q = 0 for
p < 0 or q < 0. The associated total complex is

s(A•,•)n =
⊕
p+q=n

Ap,q, D = d+ δ.

There are two descending filtrations on (sA•,•, D) given by

′F νsAn :=
⊕

p+q=n,p≥ν
Ap,q

′′F νsAn :=
⊕

p+q=n,q≥ν
Ap,q.

These filtrations define two spectral sequences:

′Ep,qr ⇒ Hp+q
D (sA•,•)

′′Er ⇒ Hp+q
D (sA•,•).
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For the first one

′Ep,q0 =
Ap,q ⊕Ap+1,q−1 ⊕ · · ·

Ap+1,q−1 ⊕Ap+2,q−2 ⊕ · · ·
∼= Ap,q

with differential d0 induced by D = d+ δ. In this case, d0 = ∂ and

′Ep,q1 = Hp+q
D (Grp′F sA•,•) = Hq

∂(Ap,•),

the differential d1 comes from D = d+δ on ′E1. In this case, d = d1 beacuse
∂ = 0 on ′E1 and we have:

′Ep,q2 = H∗(′Ep,q1 , d1) ∼= Hp
d

(
Hq
∂(A•,•)

)
.

In the same way, we have that ′′Ep,q2
∼= Hp

∂

(
Hq
d(A•,•)

)
. In summary, there are

two spectral sequences associated to a double complex which both converge
to the cohomology of the total complex.

1.2.6 The décalage filtration. Let f : (A•, F ) → (B•, F ′) be a mor-
phism of filtered complexes. It induces a morphism of complexes between
associated grades Gr(f) : GrFA

• → GrF ′B
•, and induces a morphism be-

tween associated spectral sequences

fr : Er(F )→ Er(F
′).

We say that f is a filtered quasi-isomorphism if fr are isomorphisms
for r ≥ 1. In order to endow the cohomology of a mixed Hodge complex
with a mixed Hodge structure, Deligne introduced the décalage functor in
[HodgeII]:

Definition 1.2.7 Let (A•,W•) be a filtered complex. The décalage fil-
tration is a functor Dec: C+(FA)→ C+(FA) defined by

(Dec W )`A
m := ker

{
W`−mA

m dA−→ Am+1

W`−m−1Am+1

}
.

Theorem 1.2.8 ([HodgeII, Prop. 1.3.4]) The canonical morphisms

Ep,q0 (Dec W )→ E2p+q,−p
1 (W )

are quasi-isomorphisms of bigraded complexes. The induced morphisms

Ep,qr (Dec W )→ E2p+q,−p
r+1 (W )

are isomorphisms for r ≥ 1.
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1.3. Formal aspects of Mixed Hodge Structures

We give a brief overview of Hodge structures. We start with a quick review
of the notions of pure Hodge structures and mixed Hodge structures. The
Deligne’s theorem asserts the existence of a functorial mixed Hodge struc-
ture on the cohomology of an arbitrary complex algebraic variety [HodgeI],
[HodgeII] and [HodgeIII]. Also we review some results on extensions of
mixed Hodge structures [PS08].

Definition 1.3.1 Let A ⊂ R be a subring. A pure A-Hodge structure
of weight ` consists of a finitely generated A-module H with a direct sum
decomposition, called the Hodge decomposition

HC := H ⊗A C =
⊕
p+q=`

Hp,q, with Hp,q = Hq,p.

Equivalently, HC admits a decreasing filtration F •, the Hodge filtration
such that

HC = F rHC
⊕

F `−r+1HC.

The relation is given by

F rHC =
⊕

p+q=`, p≥r
Hp,q, and Hp,q = F pHC

⋂
F qHC.

Example 1.3.2 Let X be a smooth, projective variety over C. The proto-
type of a pure Hodge structure of weight `, is the `-th cohomology group
H`(X,Z). In this case, we have the Hodge decomposition theorem:

H`
DR(X,C) =

⊕
p+q=`

Hp,q(X).

This construction gives a functor:

H∗ : SmProj(C)→ HS

where SmProj(C) is the category of smooth, projective varieties over C.

Example 1.3.3 The Hodge structure of Tate type Q(r) := (2πi)rQ is
a Q-Hodge structure of weight −2r and of pure Hodge type (−r,−r), the
decomposition is given by C = C−r,−r. The Lefschetz structure is Q(−1).
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Example 1.3.4 Let X be a smooth, projective variety over C. The r-th
Tate twist of H`(X,Q) is defined as

H`(X,Q(r)) := H`(X,Q)⊗Q(r),

this is a Q-Hodge structure of weight `− 2r.

A graded pure Hodge structure is a finite direct sum of pure Hodge
structures, possibly of different weights. A morphism of Hodge struc-
tures f : V → W is a Q-linear map which induces fC : VC → WC having
the property that it preserves type, i.e. fC(V p,q) ⊂ W p,q for all p and q.
The category of pure Hodge structures admits direct sums, tensor products,
Hom’s and duals. The category of Hodge structures is an abelian category
which we denote by HS [PS08]. In general, the category HS is not semi-
simple; this is remedied if we restrict ourselves to Hodge structures that
admit a polarization.

Definition 1.3.5 Let H be a Hodge structure of weight `. A polarization
of H is a nonsingular, bilinear form S : HC ⊗HC → C wich is defined over
Q, such that:

i) S(x, y) = (−1)`S(y, x).

ii) S(Hp,q, Hr,s) = 0 unless p = s, q = r.

iii) ip−qS(x, y) is a hermitian positive-definite bilinear form on Hp,q.

A Hodge structure that admits a polarization is said to be polarizable.
The cohomology groups of non-singular and projective complex varieties
are endowed with polarizable Hodge structures. The category of polarizable
Hodge structures is semi-simple [PS08, Cor. 2.12].

To extend these ideas to quasi-projective and singular varieties, we give
the main definition of this section, that of a mixed Hodge structure.

Definition 1.3.6 An A-mixed Hodge structure consists of the following:

− a finitely generated A-module HA,

− a finite increasing filtration W• on HA ⊗ Q := HA ⊗Z Q, called the
weight filtration,

− a finite descending filtration F • on HC := HA ⊗ C, called the Hodge
filtration,
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such that {F r} induces a (pure) HS of weight ` on GrW` := W`/W`−1, i.e.
the graged piece GrW` HA ⊗Q with the filtration F rGrW⊗C` HC is in HS(`).

A morphism of mixed Hodge structures is a morphism f : H → H ′

that tensored with Q, is compatible with the weight filtration W•, and when
is tensored with C, is compatible with the Hodge filtration F •. We denote
the category of mixed Hodge structures by MHS. The category of mixed
Hodge structures has natural direct sums, tensor products, duals and in-
ternal Hom’s. This makes the category MHS abelian and rigid [HodgeII,
Theo. 2.3.5]. For any morphism f : H → H ′ of MHS, we have an in-
duced morphism GrW` (f) of pure Hodge structures of weight `. The functor
GrW` : MHS → HS(`) is exact. We say that a mixed Hodge structure H is

polarizable if each of the graded pieces GrW` H is pure polarizable.

A fundamental result of Deligne [HodgeII, HodgeIII], shows that for
any complex variety X, the cohomology H`(X,Z) carries a canonical and
functorial mixed Hodge structure. This is the main theorem on the existence
of MHS:

Theorem 1.3.7 [HodgeII, HodgeIII] Let X be a complex algebraic variety
and Y ⊂ X a closed subvariety (possibly empty). Then H`(X,Y ) has a
mixed Hodge structure which is functorial in the sense that if f : (X,Y ) →
(X ′, Y ′) is a morphism of pairs, the induced morphism f∗ : H`(X ′, Y ′) →
H`(X,Y ) is a morphism of mixed Hodge structures. Moreover, if X is
smooth and projective, the corresponding mixed Hodge structure on H`(X)
is the classical pure Hodge structure of weight `.

The Hodge filtration F • on the cohomology Hm(X,C) satifies

Hm(X,C) = F 0 ⊇ · · · ⊇ Fm+1 = 0.

Moreover, for m ≥ d = dimC(X) we also have that F d+1 = 0.

Weights on cohomology. According to Deligne’s Theorem (1.3.7), for
a quasi-projective X, there is a functorial increasing filtration W• on the
rational cohomology Hm(X,Q), the weight filtration:

0 = W−1H
m(X) ⊂W0H

m(X) ⊂ · · · ⊂W2mH
m(X) = Hm(X).

This filtration relates the cohomology of the variety with cohomologies of
smooth, projective varieties via the quotients

GrW` H
m(X) := W`H

m(X)/W`−1H
m(X)
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where for each `, the graded piece has a pure Hodge structure of weight `.
This weight filtration has the following presentation [Dur83]:

− For X smooth and projective, the weight is pure

0 = Wm−1H
m(X,Q) ⊂WmH

m(X,Q) = Hm(X,Q).

− If X is smooth (but possibly not complete), let j : X ↪→ X be a smooth
compactification of X, such that D = X − X is a normal crossing
divisor. For all m ≥ 0, then Wm−1H

m(X,Q) = 0, the weights on
Hm(X,Q) are ≥ m. Moreover

WmH
m(X,Q) = Im

(
j∗ : Hm(X,Q)→ Hm(X,Q)

)
.

In general, the weight filtration satisfies:

0 ⊂WmH
m(X,Q) ⊂ · · · ⊂W2mH

m(X,Q) = Hm(X,Q).

− For a singular and projective complex algebraic variety X of dimension
d, consider its cubical hyperresolution X• → X, where Xα is smooth,
projective and dim(Xα) ≤ d− |α|+ 1 [GNPP88]. This gives a weight
spectral sequence:

Ep,q1 (X) =
⊕
|α|=p+1

Hq(Xα,Q)⇒ Hp+q(X,Q).

The weight filtration is given by a shift of the filtration induced on
H∗(X,Q) by the weight spectral sequence. For all m ≥ 0 it satisfies

0 ⊂W0H
m(X,Q) ⊂ · · · ⊂WmH

m(X,Q) = Hm(X,Q).

− Let X be a complex variety. Let j : X ↪→ X be a compactification of
X. Consider a hyperresolution of a pair (X•, X•)→ (X,X) such that
Dα = Xα −Xα is a normal crossing divisor for each α. Then

E−p,q1 (X) =
⊕

E
−p−|α|+1,q
1 (Xα)⇒ Hq−p(X,Q).

Example 1.3.8 Let C be a connected compact Riemann surface of genus
g, and Σ = {p1, . . . , pm} ⊂ C a finite set of points. Consider the smooth,
open surface C := C − Σ. Then H1(C,Z) carries a natural Z-MHS. The
Hodge filtration on H1(C,Z(1)) is defined in terms of a filtered complex
of holomorphic differentials on C with logarithmic poles along Σ [HodgeII,
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HodgeIII]. Poincaré duality gives us H1
Σ(C,Z) ∼= H1(Σ,Z) = 0 and we have

an exact sequence:

0→ H1(C,Z)→ H1(C,Z)→ H2
Σ(C,Z) ∼= Z⊕m →

→ H2(C,Z) ∼= Z→ H2(C,Z) = 0.

This sequence induces a short exact sequence of mixed Hodge structures:

0→ H1(C,Z)→ H1(C,Z)→ Ker
(
H2

Σ(C,Z)→ H2(C,Z)
) ∼= Zm−1 → 0.

The weights are given by: W2H
1(C,Z) = H1(C,Z),

W1H
1(C,Z) = Im

(
H1(C,Z)→ H1(C,Z)

)
= H1(C,Z) ∼= Z2g,

and W0H
1(C,Z) = 0. Then, the graded piece GrW2 = H1(C,Z) = Zm−1

with pure weight 2. Furthermore, GrW1 = H1(C,Z).

Example 1.3.9 Let X = {(x0, x1, x2) ∈ P2
C | x3

0 + x3
1 = x0x1x3} be the

nodal cubic. This is a complex projective curve with Xsing = {[0 : 0 : 1]} = p
the singular locus. A cubical resolution of X is given by the diagram

{p1, p2}

{p}

P1

X

Then we have an exact sequence on cohomology:

0→ H0(X,Z)→ H0(P1 t {p},Z)→ H0({p1, p2},Z)→ H1(X,Z)

→ H1(P1,Z)→ H1({p1, p2},Z)→ H2(X,Z)→ H2(P1,Z)→ 0.

Then H2(X,Z)
∼=−→ H2(P1,Z), and the exact sequence becomes

0→ Z→ Z⊕2 → Z⊕2 → Z→ 0→ 0→ Z→ Z→ 0.

All cohomologies are of pure weight except H1(X,Z). Taking the sequence
induced by the graded piece GrW0 :

0→ Z→ Z⊕2 → Z⊕2 →W0H
1(X,Z)→ 0

we observe that W0H
1(X,Z) has rank 1, so GrW0 H1(X,Z) = Z. By the

exact sequence that induces GrW1 , we can see that W1H
1(X,Z) = 0 and

GrW1 H1(X,Z) = 0.
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Extensions of mixed Hodge structures

The category MHS does not have enough injectives, but there is a general
theory due to Verdier-Yoneda for extensions of mixed Hodge structures. In
any abelian category A, with or without enough injectives/projectives, the
following formula provides a definition for the Ext-groups in general [PS08,
Appendix A.2.6]:

Extn(A,B) := HomD+(A)(A,B[n]),

in terms of Verdier’s derived category of A. This definition extends the clas-
sical notion of Ext in terms of injective resolutions.

1.3.10 Yoneda extensions. Let A,B ∈ A, and n ∈ Z>0. An extension
of degree n of A by B is an exact sequence

E : [ 0→ B → K−n → · · · → K−1 → A→ 0 ].

Given two extensions E and E′ of the same degree, we say are congruent
if there is a commutative diagram

0 B K−n · · · K−1 A 0

0 B K ′−n · · · K ′−1 A 0.

With the Baer sum the equivalence class sets ExtYon(A,B) form a group
[PS08, A.2.6].

Proposition 1.3.11 [PS08, Lemma A.32] Let A be an abelian category.
For A,B ∈ A, there are functorial isomorphisms

ExtnYon(A,B)
∼=−→ Extn(A,B) = HomD+(A)(A,B[n]).

An important result about Ext-groups is the following:

Lemma 1.3.12 [PS08, Lemma A.33] If Extk(A,−) is right exact for all
A ∈ A, then Extn(A,B) = 0 for n ≥ k + 1 and all A,B ∈ A.

1.3.13 Extensions of MHS. The category of mixed Hodge structures
is abelian, hence Yoneda Ext-functor gives a form to consider the groups
ExtnMHS(A,B). This is defined for n ≥ 1, for n = 0 we put Ext0

MHS =
HomMHS.



Cohomological preliminaries 15

Carlson’s description. In the category of mixed Hodge structures, one can
explicitly describe the particular case Ext1(A,B), using extensions [Car80].

Definition 1.3.14 Let A and B be two mixed Hodge structures.

i) An extension of MHS is an exact sequence of mixed Hodge struc-
tures

0 −→ A
i−→ H

π−→ B −→ 0.

We say that H is an extension of B by A. A section is a morphism
s : B → H, such that π ◦ s = 1B; an extension with section is split.

ii) A morphism of extensions is a commutative diagram

0 A H B 0

0 A′ H ′ B′ 0.

α β

A congruence of extensions is an isomorphism for which α and β are
each the identity.

Remark. Split extensions are congruent to 0→ A→ A⊕B → B → 0.

Definition 1.3.15 The set of isomorphisms classes of extensions of B by
A, is denoted by

Ext1
MHS(B,A) =

extensions

congruence
.

The group structure is imposed by the Baer summation [PS08, A.30].

Definition 1.3.16 Let H be a mixed Hodge structure. We define

J(H) :=
W0HC

F 0W0HC +W0HQ
.

Jp(H) :=
W2pHC

F pW2pHC +W2pHQ
.

The generalized Jacobian of H.

Given two filtered vector spaces (A,W•) and (B,W•) with increasing
filtrations, then Hom(A,B) has an induced filtration given by

WnHom(A,B) = {φ : A→ B | φ(WkA) ⊂Wk+nB}.

Similarly for decreasing filtrations F •. The following result on extension of
mixed Hodge structures was proved by Carlson [Car80].
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Theorem 1.3.17 (Carlson) Let A and B be a mixed Hodge structure. Then,
there exists the following identification:

Ext1
MHS(A,B) ∼=

W0Hom(A,B)C
W0 ∩ F 0Hom(A,B)C +W0Hom(A,B)

.

Where Hom(A,B) is viewed as a mixed Hodge structure.

Example 1.3.18 For m < n, the group Ext1
(
Z(m),Z(n)

)
is

Ext1
(
Z(m),Z(n)

) ∼= J
(
Hom(Z(m),Z(n))

)
∼= J

(
Z(n−m)

) ∼= C/(2πi)n−mZ = C∗.

Example 1.3.19 For H any mixed Hodge structure

Ext1
MHS(Q(0), H) ∼=

W0HC
F 0W0HC +W0HQ

.

Example 1.3.20 Let C be a smooth, projective complex curve. H1(C,Z)
is a pure Hodge structure of weight 1, and there is a natural isomorphism

Ext1
MHS

(
Z(−1), H1(C,Z)

)
=

H1(C,C)

H1(C,Z)⊕ F 1H1(C,C)
∼=

H0,1(C)

H1(C,Z)
.

This is an abelian variety, called the Jacobian variety of the curve C,
that identifies via the exponential map with Ker[H1(C,O∗C) → H2(C,Z)].
For a finite number of points Σ = {p1, . . . , pm} ⊂ C with

∑
pi = 0, the

choice of mixed Hodge estructure on H1(C −Σ,Z) defines an Abel-Jacobi
morphism on the curve C in terms of classes of extensions of mixed Hodge
structures. In general, if X is a smooth and projective variety, then

Ext1
MHS

(
Z(−q), H2q−1(X,Z)

) ∼= H2q−1(X,C)

F qH2q−1(X,C) +H2q−1(X,Z)
.

The description of the Abel-Jacobi morphism is given in the next chapter.

By Carlson’s description of Ext1
MHS, we have that the category of mixed

Hodge structures has cohomological dimension one, i.e. all higher ex-
tensions vanish.

Theorem 1.3.21 For any two mixed Hodge structures A, B, and j ≥ 2.
The functor Ext1

MHS(A,−) is right exact, and then ExtjMHS(A,B) = 0.

Proof. This is consequence of Lemma 1.3.12, and the fact that if H → H ′

is a surjective morphism of mixed Hodge structures, then

Ext1
MHS(A,H)→ Ext1

MHS(A,H ′)

is surjective. �
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1.4. Deligne-Beilinson (co)homology

We review the construction of Deligne-Beilinson cohomology and homology.
For further details, see [Jan88] and [EV88]. Let A ⊂ R be a subring and
p ≥ 0. We define the Tate twist A(p) := (2πi)pA.

Definition 1.4.1 Let X be a smooth projective complex variety of dimen-
sion d. The p’th Deligne complex A•D(p) is the complex

A•D(p) : 0→ A(p)→ OX → Ω1
X → · · · → Ωp−1

X︸ ︷︷ ︸
=:Ω•<pX

→ 0→ · · ·

in degrees 0 up to p. In this complex, Ω•X denotes the complex of holomor-
phic differential forms on X(C). The q’th Deligne cohomology of X with
coefficients in A(p) is given by the hypercohomology

Hq
D(X,A(p)) := Hq

an(X,AD(p)).

Deligne cohomology via a cone complex. Consider again the complex
of holomorphic differential forms Ω•X , and the two subcomplexes

A(p)• : 0→ A(p)→ 0→ · · ·

Ω•≥pX : 0→ 0→ · · · → 0→ Ωp
X → Ωp

X → · · ·

with natural morphisms ε : A(p) ⊂ C → Ω•X and ι : Ω•≥pX → Ω•X . Then, the
cone complex

Cone•
(
A(p)⊕ Ω•≥pX

ε−ι−→ Ω•X
)
[−1]

is given by:

A(p)→ OX
d→ ΩX

d→ · · · d→ Ωp−2
X

(0,d)−→ (Ωp
X ⊕ Ωp−1

X )

δ→ (Ωp+1
X ⊕ Ωp

X)
δ→ · · · δ→ (Ωd

X ⊕ Ωd−1
X )→ Ωd.

There is a natural inclusion of the Deligne complex into this complex

i : A•D(p)→ Cone•
(
A(p)⊕ Ω•≥pX → Ω•X

)
[−1].

By the holomorphic Poincaré lemma, this morphism is a quasi-isomorphism.
Thus, we have

Hq
D(X,A(p)) ∼= Hq

(
X,Cone(A(p)⊕ Ω•≥pX → Ω•X)[−1]

)
.
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Definition 1.4.2 The product structure on Deligne cohomology comes from
the product on the level of complexes:

∪ : AD(p)⊗ AD(q)→ AD(p+ q)

given by

x ∪ y =


x · y, if deg x = 0
x ∧ dy, if deg x > 0 and deg y = q > 0
0, otherwise.

Example 1.4.3 Take A = Z. For p = 0, Deligne cohomology is the sin-
gular cohomology H i

D(X,A(0)) = H i(X,A). For p = 1, we have a quasi-
isomorphism

exp: ZD(1)→ O∗X [−1]

via the exponential map. Explicitly, the quasi-isomorphism is given by the
following commutative diagram

0 (2πi)Z OX 0 · · ·

1 1 O∗X 1 · · ·

exp exp

Hence, H2
D(X,Z(1)) ∼= H1(X,O∗X) = Pic(X). Moreover, we have an exact

sequence:

0→ Pic0(X)→ Pic(X)→ NS(X)→ 0,

where NS(X) is the Neron-Severi group, and Pic0(X) = Jac1(X). In general,
the complex ZD(p) fits into the short exact sequence

0→ Ω•<pX [−1]→ ZD(p)→ Z(p)→ 0

and leads, by the Hodge theory, to the following short exact sequence

0 −→ H i−1(X,C)

F qH i−1(X,C) +H i−1(X,Z(q))
−→ H i

D(X,Z(q))

−→ F qH i(X,C)
⋂
H i(X,Z(q)) −→ 0.

Now, using the interpretation of the Ext-groups for mixed Hodge structures,
we have the exact sequence:
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0 −→ ExtMHS

(
Z, H i−1(X,Z(q)

)
−→ H i

D

(
X,Z(q)

)
−→ HomMHS

(
Z, H i(X,Z(q)

)
−→ 0.

In particular, the case when i = 2q gives us an exact sequence

0→ Jacq(X)→ H2q
D (X,Z(q))→ Hdgq(X)→ 0.

Deligne cycle-class morphism.

Let X be a smooth, projective variety over C. Denote by Zq(X) the group
of algebraic cycles on X of codimension q.

Theorem 1.4.4 There exists a morphism

clD : Zq(X)→ H2q
D

(
X,Z(q)

)
.

Moreover, this morphism factor through CHq(X), and we have the following
commutative diagram:

0 CHq
hom(X) CHq(X)

0 Jacq(X) H2q
D

(
X,Z(q)

)
Hdgq(X) 0

AJ clD

where CHq
hom(X) ⊂ CHq(X) are the cycles classes homologically equivalent

to zero.

A brief description of the cycle-class morphism and the Abel-Jacobi mor-
phism in the case of classical Chow groups, will be given in the next chapter
(Section 2.1). The Deligne cohomology admits an extension to an arbitrary
(possibly non-compact or singular) algebraic variety X over C.

1.4.5 Let X be a smooth, quasi-projective complex algebraic variety. A
compactification for X is a birational inclusion j : X ↪→ X of X as a
Zariski open of a smooth projective variety X [Nag62], such that the comple-
ment D := X \X is a normal crossing divisor [Hir64]. Denote by Ω•

X
(log D)

the complex of meromorphic forms on X, holomorphic on X, with at most
logarithmic poles along D.
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Definition 1.4.6 The Deligne-Beilinson complex is given by

A•DB(p) := Cone
(
Rj∗A(p)⊕ F pΩ•

X
(logD)→ Rj∗Ω

•
X

)
[−1].

The Deligne-Beilinson cohomology of X with coefficients in A(p) is
defined as anaytic hypercohomology

H i
DB(X,Z(p)) := Hi

an(X,A•DB(p)).

We can show that this is independent of the compactification [EV88,
Lemma 2.8]. The Deligne-Beilinson cohomology can be extended to the
case of a smooth simplicial scheme X•, by considering the corresponding
complex over each component Xp. For a singular variety X, a semi-simplicial
hyperresolution X• → X is a semi-simplicial scheme X• with projective and
smooth components Xp, together with a morphism to X which satisfies
cohomological descent [GNPP88]. The Deligne cohomology is given by

Hq
D(X,A(p)) := Hq

an(X•,AD(p))

where AD(p) is considered as a complex of analytic sheaves on X•. This
definition is independent of choice of hyperresolution [Jan88]. For a non-
compact case, we use a “simplicial compactification” X• ↪→ X•, where each
Xp ↪→ Xp is a good compactification, such that Dp = Xp \ Xp is again a
normal crossing divisor. We may compute the Deligne-Beilinson complex
ADB(p) on Xα, and we can arrange these complexes to be functorial with
respect to the face maps of X•. Then the Deligne-Beilinson complexes on
the Xp organize into a simplicial complex over the simplicial scheme X•.
Taking cohomology, we obtain the Deligne-Beilinson cohomology

H∗DB(X,A(r)) := H∗(X•,A•DB(r)).

This is independent of the choice of the compactification [Jan88].

1.4.7 Deligne homology. In order to have Poincaré duality, the Deligne
homology is constructed, this is a counterpart of Deligne-Beilinson coho-
mology. The construction is based on currents and C∞-chains. For the
definition, we need to introduce some notation [Jan88]:

i) Let Ωp,q
X∞ be the sheaf of (p, q)-forms on X. Denote by D

p,q
X∞ the sheaf

of currents acting on Ω−p,−qX∞ . Thus for an open set U ⊆ X, we have

D
p,q
X∞(U) := {continuous linear functionals on Γc(U,Ω

−p,−q
X∞ )}.
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ii) Sheaves D
•,•
X∞ and Ω•,•X∞ naturally form double complexes. Denote

by D•X∞ and Ω•X∞ the corresponding total complexes. We have two
Hodge filtrations

F iΩn
X∞ =

⊕
p+q=n,p≥i

Ωp,q
X∞ , F iDn

X∞ =
⊕

p+q=n,p≥i
D
p,q
X∞ .

iii) Consider
(
C•(X,A(r)), d

)
the complex of singular C∞-chains on X

with coefficients in A(r). Define the change of index by C2d−•
X := C•,X .

There is a morphism

ε : C•
(
X,A(r)

)
→ D•X∞

given by integrations over chains.

Definition 1.4.8 The Deligne homology HD
∗ (X,A(r)) is given by the

cohomology of the complex

Cone
(
C•(X,A(r))⊕ F rD•X(X)

ε−l−→ D•X(X)
)
[−1].

Deligne homology admits an extension to smooth quasi-projective va-
rieties, by considering compactifications and logarithmic singularities. For
singular varieties, X can be replaced by a simplicial variety with smooth
components X•. Then we can take a good simplicial compactification X•
and Y• = X•−X• a simplicial normal crossing divisor, so that technique of
logarithmic singularities applies [Jan88].

1.5. Appendix: Hypercohomology

The notion of hypercohomology is widely used throughout this work, so
in this small appendix we will give its definition. Hypercohomology is a
generalization of sheaf cohomology. Among other things, the definition of
Deligne-Beilinson cohomology, absolute Hodge cohomology, motivic coho-
mology are given in terms of hypercohomology.

1.5.1. Let X be a topological space. Denote by Sh(X) the abelian category
of sheaves of abelian groups on X, and by Γ(X,−) : Sh(X)→ Ab the global
section functor. The category Sh(X) has enough injectives.

Definition 1.5.1 Let F• be a bounded below complex of sheaves on X. For
i ≥ 0, we define the hypercohomology of the complex F• as

Hi(X,F•) := RiΓ(X,F•) = H i
(
Tot(Γ(X, I•,•))

)
,
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where F• → I•,• is an injective resolution. This construction defines a
functor

Hi(X,−) : C+(Sh(X))→ Ab.

We can also use this for a single sheaf F viewed as a complex in degree 0, and
we write H i(X,F) instead of Hi(X,F) . In fact, we have a hypercomology
spectral sequence

Ep,q2 = Hp(X,H(F•))⇒ Hp+q(X,F•).

Corollary 1.5.2 If f : A•1 → A•2 is a quasi-isomorphism, then

F (f) : Hi(F (A•1))→ Hi(F (A•2))

is an isomorphism on hypercohomology groups.



Chapter 2

The Abel-Jacobi morphism for Bloch’s higher Chow
groups

The main purpose of this chapter is to collect the principal tools to establish
the KLM-formula [KLM06, KL07]. For this, we start with the classical case
of Riemann surfaces, where the Abel-Jacobi morphism is given in terms of
integrals to the Jacobian. In varieties of higher dimension, this is a morphism
from cycles homologous to zero to Griffiths’s intermediate Jacobian.

2.1. The classical case

Let X be a smooth, projective complex curve of genus g. Then, H1(X,Z) de-
fines a pure Hodge structure of weight 1, so H1(X,C) = H0,1(X)⊕H1,0(X)
with F 0 = H1(X,C) ⊃ F 1 = H1,0(X). The Jacobian of X is given by

Jac(X) :=
H1(X,C)

F 1H1(X,C) +H1(X,Z)
∼=
H0(X,ΩX)∨

H1(X,Z)
,

wich is an abelian variety. Let α =
∑l

i=1 niαi ∈ CH1(X) be a non-trivial
divisor with degree

∑
i ni = 0. The classical way to compute the Abel-

Jacobi morphism is: Choose a continuous chain γ such that ∂(γ) = α and
a basis ω1, . . . , ωg of holomorphic 1-forms on X. Then the vector of periods(∫

γ
ω1, . . . ,

∫
γ
ωg

)
defines the Abel-Jacobi class. In this case, the Abel-Jacobi morphism

AJ1 : CH1(X)deg 0 → Jac(X)

gives an isomorphism. Via Carlson’s extensions [Car80], we have another
aproximation. Consider the exact cohomology sequence with support on

23
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|α|. Observe that H1
|α|(X,Z) ∼= H1(|α|,Z) = 0, then we have a sequence of

mixed Hodge structures (MHS):

0 H1(X) H1(X − |α|) H2
|α|(X) H2(X)

H1
|α|(X)

⊕
i Z(−1) Z(−1).

∼= ∼=

Σ

The cycle α defines a non-zero class in H2
|α|(X,Z) mapping to zero in

H2(X,Z). Via pullback, we obtain another short exact sequence of MHS:

0 −→ H1(X) −→ E −→ Z(−1) −→ 0.

Then, the Abel-Jacobi class of α is an extension class of this sequence in
the category MHS, {E} ∈ Ext1

MHS

(
Z(−1), H1(X,Z)

)
. The construction of

Abel-Jacobi for curves can be generalized to any smooth, projective variety
X over C, and α ∈ CHq(X) an algebraic cycle which is homologous to zero.
Then α = ∂(γ), for some γ a 2d− 2q + 1 real dimensional chain in X. The
general Abel-Jacobi morphism is

AJq : CHq(X)hom → Jacq(X)

in Griffiths’ intermediate Jacobian, wich is a complex torus defined as

Jacq(X) = J
(
H2q−1(X)

)
:=

H2q−1(X,C)

F qH2q−1 +H2q−1(X,Z)

∼=
F d−q+1H2d−2q+1(X)∨

H2d−2q+1(X,Z)
.

Let {w} ∈ F d−q+1H2d−2q+1(X,C). The Abel-Jacobi class is given by

AJq(α)({w}) =
1

(2πi)d−q

∫
γ
ω / {periods}.

On the other hand, as in the example of curves, the cycle α defines an
extension of MHS:

0 −→ H2q−1(X) −→ E −→ Z(−q) −→ 0

and we have a class {E} ∈ Ext1
MHS

(
Z(−q), H2q−1(X,Z)

) ∼= Jacq(X), see
[Car80]. Hence a reformulated Abel-Jacobi morphism

AJq : CHq(X)hom → Ext1
MHS

(
Z(−q), H2q−1(X,Z)

)
.

This result can be generelised to Bloch’s higher Chow groups [Blo86a], wich is
motivic cohomology in the smooth case (2.2.9), but a Borel-Moore homology
theory in the general case.
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2.2. Bloch’s higher Chow groups

Cycle complexes. We consider equidimensional and reduced quasi-projective
varieties over a field k. In this work, we define the cubical version of the
theory of higher Chow groups [Blo86a], [Lev94]. Let k be a field. We con-
sider the algebraic cube �1 := P1

k−{1} and �n = (�1)n with coordinates
(t1, . . . , tn). Codimension one faces on �n are obtained by setting ti = 0,∞.
Intersecting these faces gives us higher codimension faces. Let Cr(X,n) be
the free abelian group generated by subvarieties of X ×�n of codimension
r and meeting all the faces of the cubes properly. There is a map:

∂n :=

n∑
i=1

(−1)i(∂∞i − ∂0
i ),

where ∂∞i (respectively ∂0
i ) is the pull-back to the face ti =∞ (respectively

ti = 0). The map ∂n satisfies ∂n−1◦∂n = 0, effectively making
(
Cr(X,n), ∂n

)
a complex. Let Dr(X,n) be the subgroup of Cr(X,n) generated by cycles
which are the pull-back of some cycle on X × �n−1 via a projection of the
form �n → �n−1 : (t1, . . . , tn) 7→ (t1, . . . , t̂i, . . . , tn). We call such cycles de-
generate cycles. Then {Dq(X,n), ∂n} is a subcomplex of {(Cr(X,n), ∂n}.
Taking the quotient Zr(X, •) := Cr(X, •)/Dr(X, •), we have the complex

Zr(X, •) : · · · −→ Zr(X,n+ 1) −→ Zr(X,n) −→ Zr(X,n− 1) −→ · · ·

called Bloch’s cycle complex of X in codimension r.

Definition 2.2.1 The higher Chow groups are the homology groups of
the cycle complex:

CHr(X,n) := Hn

(
Zr(X, •)

)
.

Note that CHr(X, 0) = CHr(X), the classical Chow group of codimension r
cycles on X modulo rational equivalence [Ful84]

· · · ∂−→ Zr(X, 2)
∂−→ Zr(X, 1)

∂−→ Zr(X) −→ 0

the image of ∂ = ∂0
1 − ∂∞1 is exactly the cycles rationally equivalent to

zero, and CHr(X) is the cokernel. For an equi-dimensional variety X we set
Zs(X, •) = Zdim X−s(X, •). For codimension reasons, these groups vanish:
CHr(X,n) = 0 for r > n+ dim(X).

2.2.2 Formal properties. We give a list of fundamental properties of
CH∗(X,−), see [Blo86a], [Blo86b] and [Lev94].



26 Bloch’s higher Chow groups

− Funtoriality. Let f : X → Y be a morphism of k-varieties. If f is
proper, we have an induced push-forward morphism of cycle complexes
f∗ : Zr(X, •) → Zr(Y, •). If f is flat, the pull-back (contravariant) of
cycle gives the morphism of complexes f∗ : Zr(Y, •)→ Zr(X, •).

− Products. If X is smooth, quasi-projective and equidimensional, we
have the “internal” intersection product

CHp(X,m)× CHq(X,n)→ CHp+q(X,m+ n).

− Homotopy invariance. If X is equidimensional, we have

CH∗(X,n) ∼= CH∗(X × A1, n).

− Projection formula. Let f : X → Y be a proper morphism of
smooth schemes over k, α ∈ CH∗(X, ·) and β ∈ CH∗(Y, ·). Then

f∗
(
α · f∗(β)

)
= f∗(α) · β.

− Projective bundle formula. LetX be a smooth and quasi-projective
variety. If E is a vector bundle of rank n+1 over X with P(E)→ X its
projectivization, then CH∗(P(E),−) is a free CH∗(X,−)-module with
generators 1, ξ, . . . , ξn, where ξ = c1(OP(E)(1)) ∈ CH1(P(E)).

− Localization. If Z ⊂ X a closed subvariety of pure codimension d,
with X quasi-projective, then the diagram of complex with natural
maps

Zr−d(Z, ·) −→ Zr(X, ·) −→ Zr(X \ Z, ·)

can be extended to a distinguished triangle in the derived category,
giving rise to the long exact localization sequence:

→ CHr−d(Z, n)→ CHr(X,n)→ CHr(X\Z, n)→ CHr−d(Z, n−1)→ .

The localization property of cycle complexes gives us a blow-up formula

Theorem 2.2.3 Consider the Cartesian square

W V

U X

p

i
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where p is proper, i is a closed inmersion, and p induces an isomorphism

(V −W )
∼=−→ (X − U). Then there is a distinguished triangle of the form

Zr(W, •) −→ Zr(V, •)⊕ Zr(U, •) −→ Zr(X, •)
[1]−→

in the derived category of abelian groups.

Example 2.2.4 For X smooth and irreducible, in codimension one S. Bloch
[Blo86a] shows that:

CH1(X,n) =


Pic(X), n = 0
Γ(X,O∗X), n = 1
0, n > 1.

Example 2.2.5 If X = Spec(k) for a field k, by the work of Nesterenko-
Suslin [NS89] and Totaro [Tot92], CHn(k, n) ∼= KM

n (k) are the Milnor K-
groups.

Example 2.2.6 For n = 1, any cycle CHr(X, 1) can be written as a finite
sum

∑
i(fi, Di) where codimX(Di) = r−1, fi ∈ C(Di)

∗, and
∑

div(fi) = 0.

Remark 2.2.7 The original construction by Bloch uses simplicial chains
instead of cubical ones, in this case the role of the algebraic n-cube �n is
played by the algebraic simplex ∆n = Spec k[t0, . . . , tn]/(

∑
ti − 1). The

corresponding cycle complexes are quasi-isomorphic [Lev94]. In addition to
Bloch’s higher Chow groups, recently other cycle cohomology groups have
been introduced for schemes of finite type over a field k. These include the
motivic cohomology groups Hq

M(X,Z(r)) in the Voevodsky’s sense of mixed
motives (geometric motives DM(k), see [Voe00]), and the bivariant cycle
cohomology groups Arn(X) = Arn(k,X) of Friedlander-Voevodsky [FV00].

2.2.8 Motivic cohomology. Let DMgm(k) be the triangulated category
of geometrical mixed motives over k. Denote by M(X) the motive associated
to X, and Z(r) the invertible Tate object. For X ∈ Sm(k), define the
Voevodsky’s motivic cohomology of X in degree q with twist p to be:

Hq
M(X,Z(p)) := HomDMgm(k)(M(X),Z(p)[q]).

The relation between higher Chow groups and motivic cohomology, in
the smooth case, is given by the following comparison theorem:
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Theorem 2.2.9 ([MVW06, Theorem 19.1]) If X is smooth, then motivic
cohomology agrees with Bloch’s higher Chow groups

Hq
M(X,Z(p)) ∼= CHp(X, 2p− q).

In the special case when q = 2p, this is in particular a result on classical
Chow groups (cycles modulo rational equivalence). Tensoring with Q, we
have the Bloch-Grothendieck-Riemann-Roch theorem [Blo86a]:

Hq
M(X,Q(p)) ∼= K2p−q(X)

(p)
Q

with Adams eigenspaces of algebraic K-theory.

Remark 2.2.10 In general, when X is singular these isomorphisms fail,
in this case higher Chow groups play the role of motivic Borel-Moore
homology [FV00, Def. 9.1, Def. 4.3]:

HBM
p (X,Z(q)) = HomDMgm(k)(Z(q)[p],Mc(X)),

where Mc(X) is the motive with compact support associated to X. By
[MVW06, Proposition 19.18], we have

CHp(X, q) ∼= HBM
2p+q(X,Z(p)).

But this situation can be remedied using Hanamura’s higher Chow coho-
mology groups [Chap. 3, Sect. 3.2]. In [Han00], M. Hanamura replaces the
singular variety by a diagram of smoth quasi-projective varieties called the
cubical hyperresolution [GNPP88], together with Bloch’s cycle complex to
define its motivic cohomology, see also [Lev98].

2.2.11 Moving lemmas. For the construction of regulator and Abel-
Jacobi morphism, in [KLM06] the authors use certain subcomplexes ZpR(X, •)
of the cubical cycle complexes Zp(X, •) and a technique of moving lemma
to show that this is quasi-isomorphic to Bloch’s complex [KL07]. Here we
give the definition:

Definition 2.2.12 [KLM06, 5.4] Let CpR(X,n) be the cycles Z ∈ Cp(X,n)
whose components intersect X×(Tz1∩· · ·∩Tzi) and X×(Tz1∩· · ·∩Tzi∩∂k�n)
properly for all 1 ≤ i ≤ n and 1 ≤ k ≤ n, and Dp

R(X,n) := CpR(X,n) ∩
Dp(X,n). We define the complex Z

p
R(X,n) = CpR(X,n)/Dp

R(X,n).

The original moving lemma is due to Bloch and Levine, without subscript
R. This new version has been proved by Kerr-Lewis [KL07, Section 8.2]:
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Theorem 2.2.13 (Moving lemmas)

− The inclusion Z
p
R(X, •)Q ↪→ Zp(X, •)Q is a quasi-isomorphism in the

derived category.

− For D ⊂ X a closed subvariety of pure codimension q, the restriction

Z
p
R(X, •)Q

Z
p−q
R (D, •)Q

→ Z
p
R(X \D, •)Q

gives a quasi-isomorphism.

Proof. See [KL07, 8.14 - 8.16]. The first statement is also valid for
quasi-projective varieties.

2.2.14 The weight filtered spectral sequence [Lew16, Ex. 4.5] [KL07,
Ex. 3.1]. Let X be a smooth, projective variety of dimension d over C. Let
Y = Y1 ∪ · · · ∪ YN be a NCD with smooth components, and consider the
smooth quasi-projective variety of the form U = X \ Y . For each integer
` ≥ 0, let Y[`] denote the disjoint union of t-fold intersections of the various
components of Y , with corresponding semi-simplicial scheme Y[•] with an
augmentation to X, Y[•] → Y[0] := X (see Example 3.1.12). Then, we have

a third quadrant double complex Z
i,j
0 (r) := Zr+iR (Y[−i],−j) for i, j ≤ 0. The

upper-right-hand can be seen as:

Zr−2(Y[2]) Zr−1(Y[1]) Zr(X)

Zr−2(Y[2], 1) Zr−1(Y[1], 1) Zr(X, 1)

Zr−2(Y[2], 2) Zr−1(Y[1], 2) Zr(X, 2)

Gy Gy

Gy

∂

Gy

∂ ∂

Gy

∂

Gy

∂ ∂

whose differentials are d vertically (∂ as coming from the definition of Bloch’s
cycle complex) and Gy (=Gysin) horizontally. The corresponding total com-
plex s•Z(r) with D = ∂±Gy, comes associated with two spectral sequences:

Ep,q2 := Hp
Gy

(
Hq
∂(Z•,•0 (r))

)
′Ep,q2 := Hp

∂

(
Hq

Gy(Z•,•0 (r))
)
.
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According to [KL07, Section 3.1], the second spectral sequence together with

Bloch’s moving lemma Z∗(X, •)/Z∗(Y, •) qis−→ Z∗(U, •), shows that:

Hm(s•Z(r)) = ′E0,−m
2 = CH(U,m).

The first spectral sequence gives Ei,j1 = CHr+i(Y[−i],−j) and

Ei,j2 =
ker
(
Gy: CHr+i(Y[−i],−j)→ CHr+i+1(Y[−i−1],−j)

)
Gy
(
CHr+i−1(Y[−i+1],−j)

) .

The filtration on s•Z(r) induces a ”weight” filtration, which under change
of indices becomes

Im
(
CHr(X,m)→ CHr(U,m)

)
=: W−mCHr(U,m) ⊆

· · · ⊆W0CHr(U,m) = CHr(U,m).

Proposition 2.2.15 There is a third quadrant spectral sequence that con-
verges to CHr(U,m) with Ep,q1 = CHp+r(Y [−p],−q) (where p + q = −m),

and E0,−m
∞ = W−nCHr(U,m). The graded pieces are characterized by the

injection (residue map)

E−`−m,`∞ = GrW` CHr(U,m) ↪→
{

A subquotient of

CHr−`−m(Y [`+m],−`)

}
for −m ≤ ` ≤ 0.

2.3. Absolute Hodge cohomology

The construction of absolute Hodge cohomology is due to A. Beilinson
[Bei86]. This theory generalizes Deligne-Beilinson cohomology in the sense
that it includes the weight filtration. To explain this notion, we start with
the definition of A-mixed Hodge complex [HodgeIII], in particular a (polar-
izable) variant introduced by Beilinson in [Bei86].

Definition 2.3.1 Let A be a subring of R. An A-mixed Hodge complex
consists of the following data:

− A bounded below complex K•A of A-modules, such that Hp(K•A) is an
A-module of finite type for all p.
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− A bounded below filtered complex (K•A⊗Q,W ) of A⊗Q-vector spaces

with an increasing filtration W , and an isomorphismK•A⊗Q
∼−→ K•A⊗Q

in D+(A⊗Q).

− A bifiltered complex (K•C,W, F ) of C-vector spaces with an increasing
(respectively decreasing) filtration W (respectively F ), and a filtered
isomorphism α : (K•C,W )→ (K•A⊗Q,W )⊗ C in D+F (C).

− For every integer m, GrWmK
•
A⊗Q → (GrWmK

•
C, F ) is a (polarizable)

A⊗Q-complex of weight m, i.e. the differentials GrWmK
•
C are strictly

compatible with the induced filtration F , and F induces a pure (po-
larizable) A⊗Q-Hodge structure of weight m+ r on Hr(GrWmK

•
A⊗Q)

for r ∈ Z.

A mixed A-Hodge complex K•H is given by a diagram (in the derived cate-

gory) K•A
α−→ (K•A⊗Q,W )

β−→ (K•C,W, F ). In this sense, by the definition
of morphisms in derived categories, K• gives rise to a diagram

′K•A⊗Q (′K•C,W )

K•A (K•A⊗Q,W ) (K•C,W, F )

α1 α2 β1 β2

where αj , βj (j = 1, 2) are morphisms of complexes, α2 is a quasi-isomorphism,
and β2 a filtered quasi-isomorphism. According to [Jan88, Theorem 2.2],
by the work of Deligne and Beilinson, the construction of mixed A-Hodge
complexes is equivalent to the construction of mixed A-Hodge structures.
Moreover, by [Bei86, 3.11] the functor:

Db(MHSp)→ Db
MHCp

is an equivalence of triangulated categories, where MHCp is the category
of mixed Hodge complex with polarizable cohomology.

Definition 2.3.2 Let K•H be an A-mixed Hodge complex. Consider the
following morphism

K•A ⊕ Ŵ0K
•
A⊗Q ⊕ (Ŵ0 ∩ F 0)K•C

(α,β)−→ ′K•A⊗Q ⊕ Ŵ0
′K•C

(ηA, ηQ, ηC) 7→ (α1ηA − α2ηQ, β1ηQ − β2ηC)

where Ŵ• := (Dec W )• is Deligne’s decalage filtration (1.2.7). The absolute
Hodge cohomology is given by

H`
H(K•) := H`

(
Cone•(α, β)[−1]

)
= H`

(
RΓH(K•)

)
.
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We henceforth assume K•A = ′K•A, K•C = ′K•C with α2, β2 identity maps,
and K•A⊗Q = K•A ⊗Q with α1 the inclusion.

Remark 2.3.3 If A = Q, then α1 is the identity. In this case there exists
a diagram:

Cone
(
K•Q ⊕ Ŵ0K

•
Q ⊕ F 0Ŵ0K

•
C

(α,β)−→ K•Q ⊕ Ŵ0K
•
C
)
[−1]

C•H := Cone
(
Ŵ0K

•
Q ⊕ F 0Ŵ0K

•
C
β1−β2−→ Ŵ0K

•
C
)
[−1]

C•D := Cone
(
K•Q ⊕ F 0K•C

β1−β2−→ K•C
)
[−1]

D

qis

given by (η1, η2, η3) 7→ (η1, η1, η2, 0, η3). The differential morphism D be-
tween absolute Hodge and Deligne complex is given by D(η1, η2, η3) =
(−dη1,−dη2, dη3 + β1η1 − β2η2), which simply forgets the weights.

2.3.4 Hodge realizations. According to M. Levine [Lev98] and A. Hub-
ber [Hub00], there is a realization functor of triangulated categories

RH : DMgm(k)→ Db(MHS)

that by functoriality, induces a regulator morphism:

clH : Hr
M(X,Q(m))→ Hr

H(X,Q(m))

which is compatible with the localization sequence, and weight filtrations.
The explicit constructions, using currents, were made in [KLM06] and [KL07],
and we will present them in the following sections.

2.3.5 The smooth projective case. Let X be a smooth and projective
variety over C. To produce an explicit mixed Hodge complex that computes
its absolute Hodge cohomology, consider the following system [Jan88, 2.7]:

(′K•Z =)K•Z := C(X,Z(p))[2p]• = C2p+•(X,Z(p)),

K•Z⊗Q := C2p+•(X,Z(p))⊗Q,
(′K•C =)K•C := D(X)(p)[2p]•,

where K•Z⊗Q
β1−→ K•C is given by integration: (2πi)pγ 7→ (2πi)p

∫
γ .
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− F • is the Hodge filtration on D•X twisted by p.

− W• is the stupid weight filtration

WrK
•
− :=

{
K•− r ≥ 0
0 r < 0.

This filtration induces a filtered morphism (K•Q,W•) ⊗ C qis−→ (K•C,W•)
given by the Poincaré lemma. Then, the décalage filtration is

Ŵ0K
m
A⊗Q = ker

{
W−mK

m
A⊗Q →

Km+1
A⊗Q

W−m−1K
m+1
A⊗Q

}

=


Km
A⊗Q, m < 0

ker(∂) ⊂ K0
A⊗Q, m = 0

0, m > 0.

Explicitly, the complex Cone
(
K•Q⊕ Ŵ0K

•
Q⊕F 0Ŵ0K

•
C → K•Q⊕ Ŵ0K

•
C
)
[−1]

becomes the following complexes in each case:



C2p+•(X,A(p))⊕ C2p+•−1(X,A(p))⊗Z Q, • > 1
text
C2p+1(X,A(p))⊕ C2p(X,A(p))⊗Z Q⊕ {ker(d) ⊂ D2p(X)}, • = 1
text
C2p(X,A(p))⊕ {ker(∂) ⊂ C2p(X,A(p))⊗Z Q}
⊕ {ker(d) ⊂ F pD2p(X)} ⊕ C2p−1(X,A(p))⊗Z Q⊕D2p−1(X), • = 0
text
C2p+•(X,A(p))⊕ C2p+•(X,A(p))⊗Z Q⊕ F pD2p+•(X)
⊕ C2p+•−1(X,A(p))⊗Z Q⊕D2p+•−1(X), • < 0.

For q ∈ Z, its qth-cohomology is H2p+q
H (X,A(p)). By forgetting all Ŵ0’s in

the definition of the Cone complex, we have a morphism

H2p+q
H (X,A(p))→ H2p+q

D (X,A(p)).

This is an isomorphism in degrees q ≤ 0.
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2.4. The regulator morphism: KLM-formula

The KLM-formula is a morphism of complexes inducing the Bloch-Beilinson
regulator morphism with rational coefficients, where the Deligne cohomology
is computed by a complex of 3-terms [KLM06]. The Abel-Jacobi morphism
for higher Chow groups CHq(X,m) generalizes the classical Abel-Jacobi
morphism on the Chow groups CHq(X), this is a morphism from higher
Chow cycles homologous to zero to the Griffiths intermediate Jacobian.

2.4.1 The currents. Let (z1, . . . , zm) ∈ �m be the affine coordinates. On
�m we have the following currents [KLM06, page 383]:

Ω� =

∫
�m

m∧
j=1

d log zj

T� = (2πi)m
∫

[−∞,0]m
(−)

R� =

[ ∫
�m

log z1

r∧
j=1

d log zj − (2πi)

∫
[−∞,0]×�m−1

log z2

r∧
j=3

d log zj + · · ·

+ (−2πi)m
∫

[−∞,0]m−1×�1

d log zm

]
.

Consider a cycle α ∈ Zr(X × �m) in general position. Let π1 : |α| → X,
π2 : |α| → �m be the projections. Then, we have the corresponding cur-
rents1:

Rα = (π1∗ ◦ π∗2) R�,

Ωα = (π1∗ ◦ π∗2) Ω�,

Tα = (π1∗ ◦ π∗2) T�.

Recall that in the Deligne cohomology complex

C•D = Cone{C2p+•(X,Z(p))⊕ F pD2p+•
X (X)→ D

2p+•−1
X (X)}[−1]

the differential D is given by

D
(
(2πi)p−r(Tη,Ωη, Rη)

)
= (2πi)p−r(dTη, dΩη,Tη − Ωη − dRη)
= (2πi)p−r+1(T∂η,Ω∂η, R∂η);

1In the clasicall case when m = 0, we have that Rα = 0.
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the resulting cohomology at • = −r is Hp−r+1
D (X,Z(p)). To guarantee that

the currents are defined, we have to restrict to the subcomplex Z
p
R(X, •) of

real cycles. Then, we have the main result of [KLM06]:

Theorem 2.4.2 ([KLM06, 5.5]) There is a morphism of complexes

regX : ZpR(X, •)→ C2p+•
D (X,Q(p)),

induced by η 7→ (2πi)p−r(Tη,Ωη, Rη).

This morphism of complexes is called the regulator morphism in the
smooth and projective case [KLM06]. Taking the corresponding cohomology
groups, we have the Bloch’s cycle class morphism [Blo86b]:

clr,m : CHr(X,m)→ HD
2d−2r+m(X,Z(r − d))

∼=−→ H2r−m
D (X,Z(r)).

Recall that Deligne cohomology sits in an exact sequence

0→ H2q−n−1(X,C)

F qH2q−n−1(X,C) +H2q−n−1(X,Z(q))
→ H2q−n

D (X,Z(q))

→ F qH2q−n(X,C)
⋂
H2q−n(X,Z(q)) −→ 0.

Then, we have the fundamental class morphism

clr,m : CHr(X,m)→ Hdgr,m(X) := HomMHS(Q(0), H2r−m(X,Q(r)))

∼= F qH2q−n(X,C)
⋂
H2q−n(X,Z(q)).

If we define the nullhomologous higher cycles by

CHq
hom(X,n) = ker{CHq(X,n)→ H2q−n

D (X,Z(q))→ H2q−n(X,Z(q))}.

Following [KLM06], the induced map

AJr,m : CHr
hom(X,m)→ Jacr,m(X) :=

F d−r+1H2d−2r+m+1(X,C)∨

H2d−2r+m+1(X,Z(d− r))
,

is the Abel-Jacobi morphism, and is given as follows (in terms of cur-
rents). Explicitly, if α ∈ CHr(X,m) is homologous to zero, such that each
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irreducible component intersects all real faces properly, the formula for the
Abel-Jacobi map is given by the following current:

α 7→ 1

(2πi)d−r+m

[∫
α\π−1

2 [−∞,0]×�m−1

π∗2
(
(log z1) d log z2 ∧ · · · ∧ d log zm

)
∧ π∗1(ω)

(−2πi)

∫
α∩π−1

2 [−∞,0]×�m−1\π−1
2 [−∞,0]2×�m−2

π∗2
(
(log z2) d log z3 ∧ · · · ∧ d log zm

)
∧ π∗1(ω)

+ · · ·+ (−2πi)m−1

∫
α∩π−1

2 [−∞,0]m−1×�1\α∩π−1
2 [−∞,0]m

π∗2(log zm) ∧ π∗1(ω)

(−2πi)m
∫
γ
π∗1(ω)

]

Replacing the n-cube �n by the n-simplex ∆n yields similar operators Tα,
Ωα and Rα; the description of these operatos appears in [KLL18].

Remark 2.4.3 According to [KLM06], the projection of the clr,m morphism
to the real Deligne cohomology, i.e. the composition

CHr(X,m)
clr,m−→ H2r−n

D

(
X,Z(r)

) πR−→ H2r−n
D

(
X,R(r)

)
agrees with the regulator defined by Goncharov [Gon95]; this is the real
regulator morphism.

Example 2.4.4 Let X be an elliptic curve in P2
C. This is smooth, projective

curve of genus one. In this case, CH1
hom(X, 0) are the 0-cycles of degree zero

and

Jac1,0(X) =
H1,0(X)∨

H1(X,Z)
∼=

C
Z2
.

For a cycle α ∈ CH0(X)deg 0 we can write it in the form α =
∑

j(pj − qj).
Consider any real 1-chain γ on X such that ∂γ = α. Note that H1,0(X) =
Cω, where ω = dx/y = dx/

√
h(x). Then

AJ1,0(α)(ω) =

∫
γ

dx√
h(x)

=
∑
j

∫ pj

qj

dx√
h(x)

,

is the classical elliptic integral.

Example 2.4.5 Let X be a complex surface.Then, the classes in CH2(X, 1)
are represented by

{
α =

∑
i(fi, Ci) |

∑
i div(fi) = 0

}
, where the Ci’s are
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curves. The cycle class morphism cl2,1 : CH2(X, 1)→ H3
D(X,Z(2)), induces

an Abel-Jacobi morphism

AJ2,1 : CH2
hom(X, 1)→ {H

2,0(X)⊕H1,1(X)}∨

H2(X,Z)
,

given as follows. Let α ∈ CH2(X, 1), with α =
∑

j(fi, Ci). The mor-

phisms can be seen as fi : Ci → P1, and consider γi := f−1
i ([0,∞]). The

condition
∑

i div(fi) = 0 implies that γ :=
∑

i γi defines a 1-cycle. Since
α ∈ CH2

hom(X, 1), there is a real chain ζ in X, such that γ = ∂(ζ). For
ω ∈ H2,0(X)⊕H1,1(X), we have:

AJ2,1(α) =
1

(2πi)

(∑
i

∫
Ci\γi

ω log(fi) + 2πi

∫
ζ
ω
)
.

2.5. The smooth and quasi-projective case

Let U be a smooth, quasi-projective complex variety. Consider a good com-
pactification U ↪→ X of U , which means that X is a smooth projective
variety and Y := X \ U =

⋃N
i=1 Yi is a normal-crossing divisor (NCD) with

smooth components (and smooth intersections of all orders). In [KL07],
Kerr and Lewis describe the Hodge cycle class map:

clr,mH : CHr(U,m)→ H2r−m
H (U,Q(r))

in this case they reduce everything to the smooth projective case [KLM06]
through weight filtered spectral sequence on both sides. The regulator mor-
phism is given in terms of double complexes, evaluated on the graded pieces
of Gysin espectral sequence.

2.5.1 The mixed Hodge complex. Let Y[`] denote the disjoint union of
t-fold intersections of various components of Y , with corresponding hyper-
covering Y[•] → Y ↪→ X. Then, we have defined double complexes

D(r)i,j := D2r+2i+j(Y[−i])(r + i),

C(r)i,j := C(r)2r+2i+j
(
Y[−i],A(r + i)

)
,

with differentials Gy (=Gysin, horizontal) in both cases, and d repectively
∂ (vertical). Consider the associated total complexes

s•D(r) :=
⊕
i(≤0)

D(r)i,•−i =
⊕

D2r+i+•(Y[−i]),
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s•C(r) :=
⊕
i(≤0)

C(r)i,•−i =
⊕

C2r+i+•(Y[−i],A(r + i)
)
,

with differentials D = d±Gy and D = ∂±Gy. The “weight” filtrations are

′W `
(
skD(r)

)
:=

⊕
`≤i(≤0)

D(r)i,k−i

′W `
(
skC(r)

)
:=

⊕
`≤i(≤0)

C(r)i,k−i

and Hodge filtration is given by F qskD(r) :=
⊕

i F
q+r+iD2r+2i+j(Y[−i]).

This is the basic principle to endow the cohomology of a variety with a
mixed Hodge structure, the necessary filtrations must be defined on the
level of complexes to give rise to filtrations on cohomology. Then, we have

H∗(F qs•D(r)) ∼= F q+rH∗+2r
DR (U,C), H∗(s•C(r)) ∼= H∗+2r(U,Q(r)).

Recall that for the filtered complex (s•D(r), ′W ), the décalage filtration
Dec(′W ) of ′W is given by:

(Dec ′W )`skD(r) = ker
{
′W `+kskD(r)

D−→ sk+1D(r)
′W `+k+1sk+1D(r)

}
.

This is other filtration on the complex s•D(r), and we have:

Proposition 2.5.2 The décalage filtration of ′W on skD(r) is the canon-
ical filtration.

Proof. By definition of décalage filtration

(Dec ′W )`skD(r) = ker
{ ⊕
`+k≤i(≤0)

D(r)i,k−i
D−→

⊕
(0≥)`+k+1>i

D(r)i,k+1−i
}

= ker
{
D(r)`+k,−`

d−→ D(r)`+k,−`+1
}

⊕
⊕

`+k<i(≤0)

D2r+i+k(Y[−i])(r + i)

= sk{τ≤−`D(r)i,•}.

�
The usual weights on cohomology are given by the “weight” (decreasing)

filtration ′W •, under the change of indices W•(:=
′W−•), and we have

′W−`Hk(U,Q(r)) := Im
{
Hk(′W−`s•C(r))→ Hk(s•C(r))

}
=: W2r+k+`H

2r+k(U,Q).
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The action of décalage filtration is the degeneration of the spectral sequence
in the first page [HodgeII]. The Gysin spectral sequence with 0th-page

Ei,j0 := Gri′W si+jD(r) ∼= D(r)i,j ,

by [HodgeIII] degenerates at the stage E2, hence the following spectral se-
quence

Êi
′,j′

0 := Gri
′

Dec(′W )s
i′+j′D(r)

degenerates at Ê1 by the isomorphism Ê−j,i+2j
r

∼=−→ Ei,jr+1. Both converge to
H∗s•D(r). The compatibility of the total differential D with the filtration
Dec(′W )•, gives us the relation between ′W and Dec(′W ) is

Hk
(
Dec(′W )−`−ks•D(r)

) ∼= Im
{
Hk
(
Dec(′W )−`−ks•D(r)

)
→ Hk

(
s•D(r)

)}
.

Writing Ŵ0 = Dec(′W )0, the compatibility of spectral sequences implies,
when k = −`, that

Hk(Ŵ0s
•D(r)) ∼= W2rH

2r+k(U,C).

Corollary 2.5.3 The following system K• given by:

− (K•Q,W ) = (s•C(r),W•),

− (K•C,W, F ) = (s•D(r),W•, F
•)

defines a mixed Hodge complex associated to X, where W• = ′W−• and β1

is given by integration on each Y[−i].

Definition 2.5.4 The absolute Hodge cohomology of U is given by the
mixed Hodge complex K•, i.e. H2p+q

H (U,Q(p)) := Hq
H(K•).

The cone complex associated to K•, by definition is:

Q•H(r) := Cone
{
s•C(r)

⊕
Ŵ0s

•C(r)⊗Q
⊕

(Ŵ0 ∩ F 0)s•D(r)

→ s•C(r)⊗Q
⊕

(Ŵ0 ∩ F 0)s•D(r)
}

[−1]

where Ŵ0s
•(r) = ker

{
′W ksk(r) → sk+1(r)

′Wk+1sk(r)

}
. By remark (2.3.3), the ab-

solute Hodge cohomology is computed by the kth-cohomology of the complex

Q•H(r) := Cone
(
Ŵ0s

•C(r)⊕ F 0Ŵ0s
•D(r) −→ Ŵ0s

•D(r)
)
[−1]

= Cone

{
s•(τj≤0C(r))

⊕[(F 0s•D(r)) ∩ s•(τj≤0D(r))]
β1−β2−−−−→ s•(τj≤0D(r))

}
= s•H(r)•,•
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where s•H(r)•,• is the total complex associated to the double complex

H(r)i,j0 :=



0, j > 1
text

ker(d) ⊂ D2(r+1)(Y[−i]), j = 1

text

ker(∂) ⊂ C2(r+i)
(
Y[−i],Q(r + i)

)⊕
ker(d) ⊂ F 0D2(r+1)(Y[−i])

⊕
D2r+2i−i(Y[−i]), j = 0

text

C2r+2i+j
D

(
Y[−i],Q(r + i)

)
, j < 0.

This double complex is third quadrant, with differentials D (cone differen-
tial, vertical) and Gysin (horizontal), and is zero if i > 0. The elements of
H(r)i,j can be written as (a, b, c), with a, b both zero if j = 1.

2.5.5 The regulator morphism. As Y[−i] is smooth and projective, the
KLM-formula gives a realization morphisms of double complexes:

Z
i,j
0 (r) := Zr+iR (Y[−i],−j) → H(r)i,j0

ξ 7→ (−2πi)r+j
(
(2πi)−jTξ,Ωξ, Rξ

)
.

via the quasi-isomorphism C•H(Y[−i],Q(r)) → C•D(Y[−i],Q(r)). By consider-
ing the total complex of both sides, the KLM- formula defines a regulator
morphism on the level of complexes for U

regU : s•
(
Z•,•(r)

)
=: Z•U (r)→ H•U (r) := s•

(
H•,•(r)

)
.

The weight filtered cycle-class morphism is given by the following spec-
tral sequence:

Proposition 2.5.6 There is a (Gysin) spectral sequence that converges to
H∗(s•H(r)•,•) ∼= H2r+∗

H (U,Q(r)), with H(r)i,j0 := H(r)i,j and d0 := D. This
weight spectral sequence induces a weight filtration with graded pieces:

Gr−i′WH
i+j(s•H(r)) = GrWj H

2r+i+j
H (U,Q(r)) ∼= H(r)i,j∞ .

The total cohomologies give us the cycle-class morphisms

clr,mH : CHr(U,m) ∼= H2r−m
M (U,Q(r)) → H2r−m

H (U,Q(r))

with graded pieces

GrW−`(clr,mH ) : Z(r)−`−m,`∞ → H(r)−`−m,`∞ .
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To give a precise description of the Abel-Jacobi morphism, Kerr and Lewis
describe explicitly these graded pieces. According to [KL07], there is a
weight spectral sequence on singular cohomology, that degenerates at the
second page. Consider the following short exact sequence of MHS:

0→W`−1 →W0 → Gr0,`−1
W → 0

applied on the cohomology H2r−m−1(U,Q(r)), and define

Ξ` := Image


HomMHS

(
Q(0),GrW0,`−1H

2r−m−1(X \ Y,Q(r))
)

Ext1
MHS

(
Q(0),GrW`−1H

2r−m−1(X \ Y,Q(r))
)


Proposition 2.5.7 ([KL07, Prop. 2.7]) The graded pieces of absolute Hodge
cohomology are given by

H(r)−m−`,`∞
∼=

Ext1
MHS

(
Q(0),GrWj−1H

2r−m−1(X \ Y,Q(r))
)

Ξj

for −m ≤ ` < 0, and for ` = 0 there is a short exact sequence:

0 −→
Ext1

MHS

(
Q(0),GrW−1H

2r−m−1(X \ Y,Q(r))
)

Ξ0

−→ H(r)−m,0∞ −→ HomMHS

(
Q(0), H2r−m(X \ Y,Q(r)) −→ 0.

2.5.8 On the other hand, the Cone presentation of s•H(r)•,•, it gives a
short exact sequence:

0 −→ Ext1
MHS

(
Q(0), H2r−m−1(U,Q(r))

)
−→ H2r−m

H (U,Q(r))

−→ HomMHS

(
Q(0), H2r−m(U,Q(r))

)
−→ 0.

Define:

CHr
hom(U,m) := Ker

{
CHr(U,m)→ HomMHS

(
Q(0), H2r−m(U,Q(r))

)}
.

The following result is the Abel-Jacobi in the quasi-projective case:
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Theorem 2.5.9 There is an Abel-Jacobi morphism

AJr,m : CHr
hom(X \ Y,m)→ Ext1

MHS

(
Q(0), H2r−m−1(X \ Y,Q(r))

)
such that in the graded pieces GrWj (AJr,m) look like:

GrWj CHr
hom(X \ Y,m)⊗Q

Ext1
MHS

(
Q(0),GrWj−1H

2r−m−1(X\Y,Q(r))
)

Ξj
,

for −m ≤ ` ≤ 0. This is evaluated with KLM-formula.

Remark 2.5.10 Taking only the 0th column, the resulting complex com-
putes the absolute Hodge cohomology of X, H2p+∗(X,A(p)). Similarly, each
complex column computes the cohomology of Y[i]. In the general double

complex, if we omit the 0th column, we obtain:

HBM
2r+m

(
Y,Q(r)

)
= CHr(Y,m) ∼= H2p−m+2

M,Y

(
X,Q(r + 1)

)
for motivic cohomology with support on Y . In summary, for U smooth and
quasi-projective variety and U ↪→ X a smooth compatification of U with
Y := X −U a normal crossing divisor, we get cycle-class morphisms of long
exact sequences

CHr−1(Y,m) CHr(X,m) CHr(U,m)

H2r−m
H,Y (X,Q(r)) H2r−m

D (X,Q(r)) H2r−m
H (U,Q(r))

where both exact sequences are given by the localization sequence on the
level of complexes [KL07].



Chapter 3

Motivic cohomology for singular varieties

In [Han00], Hanamura extends the definition of the motive of quasi-projective
varieties to schemes of finite type over a field k that admits resolution of sin-
gularities, using the method of Hironaka’s resolution of singularities [Hir64],
and more generally cubical hyperresolutions [GNPP88]. The same tech-
nique is used by Levine in [Lev98], to define his cohomological motives. For
a quasi-projective variety X, Hanamura applies the technique of hyperreso-
lutions to the cycle theory of S. Bloch and defines its motivic cohomology.

3.1. Cubical hyperresolutions

The technique of cubical hyperresolutions was developed by Guillén-Navarro-
Pascual-Puerta in [GNPP88], as an alternative to simplicial resolutions for
Deligne theory of mixed Hodge structures [HodgeIII]. In this theory one
replaces a singular variety by a cubical diagram of smooth varieties. Here
we review the construction of cubical hyperresolutions, and some examples.
We recall some notions from [GNPP88] and [GNA02], see also [PS08].

Notation and conventions

From this chapter on, k will be a field that admits resolution of singularities.
The category of separated schemes of finite type over k is denoted by Sch(k).
Denote the category of quasi-projective varieties by QuProj(k), by Sm(k)
to the category of smooth varieties, and by SmProj(k) the category of
smooth and projective varieties over k. Let I be the category associated to
a finite partially ordered set. By an I-diagram of schemes we mean a
contravariant functor X• : I → Sch(k), from the category I to the category
of schemes. The I-schemes form a category. If X• : I → Sch(k) is an I-
scheme, and i ∈ Ob(I), then Xi will denote the scheme corresponding to
i. If φ : i → j is a morphism in I, will be denote by Xφ : Xj → Xi the

43
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corresponding morphism of schemes. If f• : X• → Y• is a morphism of I-
schemes, we denote by fi the induced morphism Xi → Yi. We say that
a morphism f• : X• → Y• of I-diagrams is a closed inmersion, projective,
proper, separated, etc., if fi : Xi → Yi is a closed immersion, projective,
proper, separated, etc., for all i ∈ I.

Definition 3.1.1 Given a morphism of I-schemes f• : X• → Y•, we define
the discriminant of f to be the smallest closed sub-I-scheme Z• of Y• such
that fi : (Xi − f−1

i (Zi))→ (Yi − Zi) is an isomorphism for all i ∈ Ob(I).

3.1.2 The cubical category. Let 1 be the category {0}, and 2 be the
category {0→ 1} ({0 < 1}). Let n ≥ 1 be an integer. We denote by �+

n the
product of n+ 1 copies of the category 2 = {0→ 1}, i.e.,

�+
n := ({0→ 1})n+1.

The objects of �+
n are identified with the sequences α = (α0, . . . , αn) such

that αi ∈ {0, 1} for 0 ≤ i ≤ n, and it is useful to define |α| =
∑
αi. The

morphisms Hom�+
n

(α, β), for two objects α, β ∈ �+
n are given by:

Hom�+
n

(α, β) :=

{
α→ β if αi ≤ βi for 0 ≤ i ≤ n
∅ otherwise.

For n = −1, we set �+
−1 = {0} and for n = 0 we have �+

0 = {0 → 1}. Let
�n be the full subcategory without the initial object (0, . . . , 0). Clearly, the
category �+

n can be identified with the category �n with an augmentation
morphism to {0}. The objects in the category �+

n can be seen as:

• •

• • • •

• •

◦ • ◦ • ◦ • ◦

for n = {−1, 0, 1, 2}. The category �n are the same diagrams without the
initial object (�n = �+

n − {(0, . . . , 0)}).

Definition 3.1.3 An augmented cubical variety or �+
n - variety (resp.

a cubical variety or �n-variety) on QuProj(k) is defined as a contravariant
functor X+

• : �+
n−1 → QuProj(k) (resp. X• : �n−1 → QuProj(k)).
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Morphisms between two cubical varieties are given by natural transfor-
mations, and then cubical varieties form a category. In order to construct
cubical hyperresolutions, we start with the notion of a 2-resolution, which
is an iterative step for such a construction.

Definition 3.1.4 ([GNPP88, I.2.7]) Let X be a I-scheme. The Cartesian
square (up to taking the reduced scheme structure, i.e., X11 = (X10 ×X
X01)red) of morphism of I-schemes

X11 X01

X10 X

f

is called a 2-resolution of X if it satisfies the following conditions:

(1) X01 is a smooth I-scheme,

(2) the horizontal arrows are closed inmersions of I-schemes,

(3) f is a proper I-morphism,

(4) X10 contains the discriminant of f .

In other words, the condition (4) says that f induces an isomorphism of
(X01)i − (X11)i over (X)i − (X10)i for all i ∈ Ob(I). Clearly 2-resolutions
always exist under the same hypotheses that resolutions of I-schemes exist.

3.1.5 The reduction process. The previous 2-resolution, X1
• → X, can

be seen as a morphism of �+
0 -varieties X1• → X0•, where X00 = X. For

a 2-resolution X2
• of X1•, we can define a �+

2 -variety by reducing the two
2-resolutions X2

• → X1
• → X as

X2
11• X2

01•

X2
10• X1

0•

in other words, the diagram suppresses the vertex X2
00• = X1

1•. This con-
struction motivates the following definition, important for the notion of cu-
bical hyperresolution.
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Definition 3.1.6 ([GNPP88, I.2.11]) Let r ≥ 1 be an integer, and Xn
• be a

�+
n × I-scheme for 1 ≤ n ≤ r. Suppose that for all 1 ≤ n ≤ r, the �+

n−1× I-

schemes Xn+1
00• and Xn

1• are equal. Then we define, by induction on r, the
�+
r × I-scheme

Z• := red(X1
• , X

2
• , . . . , X

r
•)

which we call the reduction of (X1
• , X

2
• , . . . , X

r
•), in the following way:

(1) If r = 1, we define Z• = X1
• .

(2) if r = 2, we define Z• = red(X1
• , X

2
• ) by

Zαβ =

{
X1

0β if α = (0, 0)

X2
αβ if α ∈ �1

for all β ∈ �+
0 , with the obvious morphisms.

(3) If r > 2, we define recursively

Z• = red
(
red(X1

• , . . . , X
r−1
• ), Xr

•
)
.

Now we come to the definition of a cubical hyperresolution, the principal
definition of this section.

Definition 3.1.7 ([GNPP88, I.2.12]) Let X be an I-scheme. A �+
r × I-

scheme Z• = red(X1
• , X

2
• , . . . , X

r
•) is called an (augmented) cubical hy-

perresolution of X if

(1) X1
• is a 2-resolution of X,

(2) for 1 ≤ n < r, Xn+1
• is a 2-resolution of Xn

• ,

(3) Xα is smooth for all α ∈ �r.

The number r is the length of hyperresolution X•. The machinery be-
hind cubical hyperresolutions, is an iterative process of 2-resolutions with
its corresponding reductions.

Notation. A cubical hyperresolution X• = red(X1
• , X

2
• , . . . , X

r
•) naturally

defines a semi-simplicial scheme1, where the p-th component is

Xp =
∐

|α|=p+1

Xα, with |α| = |(α0, . . . , αm)| = α0 + · · ·+ αm;

1Also called strict simplicial scheme, in our case it is also truncated.
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we denote this by the same X•. A semi-simplicial scheme is a sequence
of varieties Xp together with face morphisms di : Xp → Xp−1 for 0 ≤ i ≤ p,
and augmentation morphism a over X:

· · · X2 X1 X0 X
d2

d1

d0

d1

d0

a

such that di ◦ dj = dj−1 ◦ di for 0 ≤ i < j ≤ p, and a ◦ d0 = a ◦ d1. Contrary
to the simplicial schemes, here the degeneration morphisms are irrelevant
for our following purposes. A morphism of semi-simplicial schemes
f• : X• → X ′• is a family of morphisms {fp : Xp → X ′p} such that all the
fp’s commute with the face morphisms of X• and X ′•. We denote an aug-
mented hyperresolution X+

• as a : X• → X, such that Xp is smooth for all
p, and ap : Xp → X are proper. In this sense, X• → X can be seen as a
morphism of semi-simplicial schemes, by considering X as simplicial scheme
with Xp = X for all p ∈ Z≥0 and by setting all face morphisms to be the
identity morphism.

Construction and existence of cubical hyperresolutions

Definition 3.1.8 Let k be a field, and X be a quasi-projective variety over
k with singular locus Σ. A resolution of singularities of X is a proper
birational morphism p : X̃ → X, where X̃ is a smooth variety; p induces an
isomorphism outside Σ and E = p−1(Σ) is a simple normal crossing divisor.

In characteristic zero, Hironaka [Hir64] proves that there is resolution of
singularities for any variety. Futhermore, these resolutions are compositions

X̃ −→ Xn −→ · · · −→ X1 −→ X0 = X

of finetely many blow-ups along the smooth centers Zi ⊂ Xi.

Under the current assumption that resolutions of singularities exist, a cu-
bical hyperresolution of any variety exists. Cubical hyperresolution is an
iterative process of Hironaka’s resolution of singularities2. For proofs about
the existence of cubical hyperresolutions, see [GNPP88, I.2.15] and [PS08,
Theo. 5.26]. For our future purposes, the following theorem is enough.

2In prime charactiristic, alterations in the sense of de Jong give another way to con-
struct hyperresolutions.
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Theorem 3.1.9 Let X be a quasi-projctive variety over a field k of char-
acteristic 0. Then there exists a cubical hyperresolution X• of X such that
dim Xα ≤ dim X − |α|+ 1, for all α ∈ �+

n .

Proof. The first step in the recurrence is the resolution of singularities of
X, this is a diagram of the form

E X̃

Σ X

i′

p′ p

i

This diagram defines is so-called a 2-resolution X1
• → X of X

X1
11 X1

01

X1
10 X00 = X

p

If X1
11 and X1

10 are smooth, this 2-resolution X1
• → X defines an hyperres-

olution of X with associated semi-simplicial scheme given by

X1 = X11 X0 = X10
∐
X01 X

with an augmentation over X (of length one). If X1
11 and X1

10 are not
smooth, since dim(X1

11),dim(X1
10) < dim(X), the inductive process continue

applying again resolution of singularities on X1
11 and X1

10 to construct a 2-
resolution of (X1

11 → X1
10) = X1

1•, this is X2
• → X1

• → X. The reduction
process eliminates the non-smooth components X2

00• = X1
1•, and replaces

them with the components X1
0•

X2
111 X2

011

X2
110 X2

010

X2
101 X2

001 X1
11 X1

01

X2
100 X2

000 X1
10 X1

00

If all the other vertices Xα are smooth, this gives a hyperresolution of X.
Again, dim Xα ≤ dim X − |α| + 1 for all α ∈ �+

2 . Again, this cube gives
rise to a semi-simplicial scheme of the form

X2 = X111 X1 = X110
∐
X101

∐
X011 X0 = X100

∐
X010

∐
X001
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with an augmentation over X. If not all components are smooth, we proceed
in the same way to take a 2-resolution X3

• → (X2
11• → X2

10•) of one face of
the cube:

X2
111 X2

110

X2
101 X2

100

and so on, this process is bounded by the dimension of X. At the end, after
a finite number of steps, we get to that all the vertices of the r-dimensional
cube are smooth, then we obtain a cubical hyperresolution (under reduc-
tions) X• = red(X1

• , X
2
• , . . . , X

r
•) → X, with an augmented semi-simplicial

scheme X• → X. �

Remark 3.1.10 The main techinical advantage of Guillén, Navarro-Aznar
et al. constructions over Deligne’s construction, is that resulting semi-
simplicial scheme is finite, bounded by the dimension of X.

Example 3.1.11 Let C be an algebraic curve over k. Consider the nor-
malization η : C̃ → C and the singular locus Σ ⊂ C. In particular, Σ is the
discriminant of η and E = η−1(Σ) the exceptional set (with reduced scheme
structure). We have the following Cartesian square:

E C̃

Σ C.

η

It is clearly a 2-resolution and thus also a cubical hyperresolution of C.

Example 3.1.12 Let Y be a connected normal crossing variety, i.e.,
Y =

⋃N
i=1 Yi, where each irreducible component is smooth and projective.

Set
YI := Yi1 ∩ · · · ∩ Yit , I = {1, . . . , t}

Y[t] =
∐
|I|=t

YI .

For I = {i1, . . . , it}, consider the following notation Ij = {i1, . . . , îj , . . . , it};
therefore, there exist t natural inclusions djI : EI → EIj . Then, the inclusions
define a semi-simplicial hyperresolution Y[•] → Y of Y , given by:

· · · Y[3] Y[2] Y[1] Y.a
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A complex on Y[•] is a double complex, with a complex over each Y[t] com-
patible with face morphisms. If a is of cohomological descent, the simple
complex associated to the double complex computes the cohomology of Y . In
this case, the spectral sequence associated to hyperresolution is the Mayer-
Vietoris (or Čech) spectral sequence associated to decomposition. This is
the principal role plays the descent cohomological property (see 4.2.1).

Theorem 3.1.13 ([GNPP88, I.6.9]) Let X be an I-scheme. If X• → X is
a cubical hyperresolution of X, then X• has cohomological descent over X.

3.1.14 The category of hyperresolutions. A morphism of hyperreso-
lutions over a morphism f : X → X ′ is given by taking an inclusion func-
tor ir,r′ = i1 ◦ · · · ◦ ir′−r : �+

r → �+
r′ (r ≤ r′), where ij : �+

r → �+
r+1

sends (α0, . . . , αr) to (α0, . . . , αj−1, 0, αj , · · · , αr), and taking a morphism
of �+

r × I-diagrams f• : X• → X ′• such that the morphism f(0,...,0) is f . Cu-
bical hyperresolutions of I-schemes form a category. A morphism of hyper-
resolutions induces the associated morphism of augmented semi-simplicial
schemes, also denoted by f• : X• → X ′•. Denote by Hrc the category of hy-
perresolutions of quasi-projective 1-varieties over k. The above construction
gives us a natural functor

Hrc → QuProj(k)

X• 7→ X.

by taking the (0, . . . , 0) component of the associated augmented hyperres-
olution. Localizing Hrc with respect to the class Σ of morphisms which
induces identities in QuProj(k), we obtain the category HoHrc. Hence,
we have an induced functor

HoHrc→ QuProj(k).

This functor is an equivalence of categories [GNPP88, Theo. 3.8].

3.2. Chow cohomology groups

Let X be a quasi-projective variety over C. The principal idea of cubical hy-
perresolutions is to replace a singular variety X by a semi-simplicial variety
a : X• → X [GNPP88]. This is a truncated semi-simplicial scheme

X• =
{
· · · X2 X1 X0

d0

d1

d2

d0

d1

}
a−→ X
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consisting of smooth quasi-projective varieties, with an augmentation a to
X. In [Han00, Theo. 2.3], Hanamura proves that the homological cycle
complex has the property of descent, in other words, the morphism of com-
plexes a∗ : Zr(X•)∗ → Zr(X, •) is a quasi-isomorphism, this is a consequence
of the localization theorem of Bloch’s cycle complexes. Here, Zr(X•)∗ is the
double complex with differentials d∗ =

∑
(−1)idi∗. On the cohomological

side, we have the following construction.

3.2.1 Hanamura’s motivic cohomology. Let X be a quasi-projective
variety, and X• → X its semi-simplicial hyperresolution. For each Xp take
its cycle complex Zr(Xp, •), and form a double complex

0 −→ Zr(X0, •)
d∗−→ Zr(X1, •)

d∗−→ · · · d∗−→ Zr(Xα, •)
d∗−→ · · ·

where the horizontal differentials are given by d∗ =
∑

(−1)id∗i , the alternat-
ing sums of the pull-backs of face maps. We denote by Zr(X•)

∗ its total
complex and we call it the cohomological cycle complex of X.

Remark 3.2.2 In Hanamura’s construction, strictly speaking one chooses
appropiate distinguished subcomplexes (quasi-isomorphic to Bloch’s cycle
complexes), so that the pull-back d∗ is well-defined [Han00]. For smooth,
quasi-projective varieties X, the collection of distinguished subcomplexes
satisfies the following conditions:

− The inclusion of a distinguished subcomplex Zr(X, •)′ ⊂ Zr(X, •) is a
quasi-isomorphism.

− If Zr(X, •)′ and Zr(X, •)′′ are distinguished subcomplexes of Zr(X, •),
there is a third distinguished subcomplex Zr(X, •)′′′ contained in both
Zr(X, •)′ and Zr(X, •)′′.

− If f : X → Y is a morphism of smooth, quasi-projective varieties, and
Zr(X, •)′ ⊂ Zr(X, •), there is a distinguished subcomplex Zr(Y, •)′ ⊂
Zr(Y, •) such that the morphism f∗ : Zr(Y, •)′ → Zr(X, •)′ is well de-
fined.

The main result on the cohomological cycle complex is that it is inde-
pendent of the hyperresolution up to isomorphisms in the derived category.

Theorem 3.2.3 ([Han00, Theorem I]) Let X be a quasi-projective vari-
ety, X• → X and X ′• → X be hyperresolutions of X, and X• → X ′• a
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morphism over X. Then the induced morphism Zr(X ′•)
∗ → Zr(X•)

∗ is a
quasi-isomorphism. There is a contravariant functor

Zr(−)∗ : QuProj(k)→ D+(Q)

that sends X to Zr(X•)
∗ and a morphism f : X → Z the induced morphism

(f•)
∗ : Zr(X•)

∗ → Zr(Z•)
∗, where f• : X• → Z• is a morphism of semi-

simplicial hyperresolutions over f .

In terms of motives, Levine [Lev98, IV.3] associates to a hyperresolution
X• of X a motive ZX• in Db

mot(Sm(k)). The morphism of hyperresolutions
gives a morphism of motives (f•)

∗ : ZX• → ZX′• in Cb
mot((Sm(k)), canoni-

cally isomorphic in Db
mot(Sm(k)). In order to prove this and Theorem 3.2.3,

Hanamura considers a Cartesian square of quasi-projective varieties

W ′ X ′

W X

α

g f

β

such that f is proper and induces an isomorphism (X ′ −W ′) → (X −W ),
with corresponding diagram of hyperresolutions

W ′• X ′•

W• X•

α•

g• f•

β•

over the above square. Then, the induced morphism

(f∗• , g
∗
•) : Cone(β∗•)→ Cone(α∗•)

is an isomorphism in Db
mot(Sm(k)) (respectively in Db(Q)). Once we have

the independence of hyperresolution, we give the following definition:

Definition 3.2.4 For a quasi-projective variety X, we define

CHCr(X,m) := Hm

(
Zr(X•)

∗)
called higher Chow cohomology group3 of X.

3Or motivic cohomology of X in Hanamura’s sense of triangulated mixed motives.
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3.2.5 Hanamura’s spectral sequence. For a quasi-projective variety
X, consider its semi-simplicial hyperresolution X• → X. The cohomological
cycle complex Zr(X•)

∗ of X defines a fourth quadrant double complex:

Ep,q0 (r) := Zr(Xp,−q); i ≥ 1, j ≤ 0.

This complex can be seen as

Zr(X0) Zr(X1) Zr(X2)

Zr(X0, 1) Zr(X1, 1) Zr(X2, 1)

Zr(X0, 2) Zr(X1, 2) Zr(X2, 2)

d∗ d∗

∂

d∗ d∗

∂ ∂

∂

d∗

∂

d∗

∂

whose differentials are ∂ vertically (∂ as coming from the definition of Bloch’s
cycle complex) and d∗ are the alternating sums of the pull-backs. Again,
denote the total complex by Zr(X•, ·)∗.

Proposition 3.2.6 There is a cohomological spectral sequence associated to
the Chow cohomology double complex

Ep,q1 (r) := CHr(Xp,−q)⇒ CHCr(X, p− q).

In the homological sense, there is a first quadrant convergent spectral se-
quence

E1
p,q(r) := CHr(Xp, q)⇒ CHr(X, p+ q).

Proof. Let X• → X be the augmented semi-simplicial scheme given
by a cubical hyperresolution of X. The first spectral sequence is trivial
from the definition of Chow cohomology groups. The second one is a con-
sequence of descent property for cycle complexes, the complex Zr(X•)∗ is
quasi-isomorphic Zr(X, •) and we have a first quadrant spectral sequence
E1
p,q(r) := CHr(Xp, q)⇒ CHr(X, p+ q). �

Theorem 3.2.7 The Chow cohomology groups have the following proper-
ties:
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(1) The assignament X 7→ CHCr(X,m) defines a contravariant functor; a
map f : X → Y induces a morphism f∗ : CHCr(Y,m)→ CHCr(X,m).

(2) If X is smooth, then CHCr(X,m) = CHr(X,m).

(3) Homotopy invariance: The projection X × A1 → X induces an
isomorphism

CHCr(X,m) ∼= CHCr(X × A1,m).

(4) Mayer-Vietoris: For an open covering X = U ∪ V :

→ CHCr(X,m)→ CHCr(U,m)⊕CHCr(V,m)→ CHCr(U ∩ V,m)→

Proof. The first two properties are clear. The homotopy property is given
by the homotopy property of Bloch’s higher Chow groups (for smooth vari-
eties), together with the fact that if X• is a semi-simplicial hyperresolution
of X, then X• × A1 is a semi-simplicial hyperresolution of X × A1. Via
Hanamura’s spectral sequence

Ep,q1 (r) = CHr(Xp,−q) CHCr(X, p− q)

Ep,q1 (r) = CHr(Xp × A1,−q) CHCr(X × A1, p− q)

∼=

we have the isomorphism CHCr(X, p − q) ∼= CHCr(X × A1, p − q). For
the Mayer-Vietoris property, again we consider a cubical hyperresolution
X• → X of X. Then the base change U• := X• ×X U , V• := X• ×X V , and
(U ∩ V )• := X• ×X (U ∩ V ):

X• ×X U X

U X

X• ×X V X

V X

X• ×X (U ∩ V ) X

(U ∩ V ) X

form hyperresolutions of U , V , and (U ∩ V ) respectively. Thus we obtain
the following diagram:

(U ∩ V )• U•

V• X•
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with Uα ∪ Vα = Xα and Uα ∩ Vα = (U ∩ V )α. Then the morphisms

Zr(Xα, •)→ Cone•[Zr(Uα, •)⊕ Zr(Vα, •)→ Zr(Uα ∩ Vα, •)]

are quasi-isomorphis for all α ∈ �r, this leads to Zr(X•)
∗ and induces the

long exact Mayer-Vietoris sequence. �

Example 3.2.8 ([Han14, Prop. 1.1, 1.2]) Let C be a quasi-projective curve
over k. Let η : C̃ → C be the normalization of C, with Σ ⊂ C the singular
locus and E = η−1(Σ). In this case η is a resolution of singularities and
defines a commutative square, that gives a cubical hyperresolution of C
(3.1.11). Taking the semi-simplicial hyperresolution, we have by definition

Zr(C, •)∗ := Cone{Zr(C̃, •)⊕ Zr(Σ, •)→ Zr(E, •)}[−1].

Then, there is a long exact sequence

· · · → CHCr(C,m)→ CHr(C̃,m)⊕ CHr(Σ,m)→ CHr(E,m)

→ CHCr(C,m− 1)→ · · ·
By (2.2.4), if r = 1 and X is smooth, then CH1(X,m) = 0 for m 6= 0, 1 and
CH1(X, 1) = Γ(X,O∗X). Then CHC1(C,m) = 0 for m 6= 0, 1, and we have
the exact sequence

0→ CHC1(C, 1)→ Γ(C̃,O∗
C̃

)⊕ Γ(Σ,O∗Σ)→ Γ(E,O∗E)

→ CHC1(C)→ CH1(C̃)→ 0.

Now, Γ(C̃,O∗
C̃

) = k∗, Γ(Σ,O∗Σ) =
⊕

p∈Σ k
∗ and Γ(E,O∗E) =

⊕
q∈E k

∗. If C

is irreducible and projective, then CHC1(C, 1) = k∗ and there is an exact
sequence:

0→
⊕
p∈Σ

(⊕
q 7→p

k∗
)
/k∗ → CHC1(C)→ CH1(C̃)→ 0.

Theorem 3.2.9 ([Han14, Theorem 3.3]) Let S be an irreducible normal
quasi-projective surface over an algebracally closed field of characteristic
zero, and E the execptional divisor given by a desingularization of S. Then
the canonical morphism

CHCr(S, n)Q → CH2−r(S, n)Q

is an isomorphism for all r, n if only if E is a rational tree.

Remark 3.2.10 Hanamura’s construction can be seen as an application of
the principle of extension of Guillén-Navarro [GNA02], applied to higher
Chow groups, then many of the properties for smooth varieties can be in-
herited to singular varieties.
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3.3. Voevodsky’s motivic cohomology

The purpose of this section is to see the relationship between Hanamura’s
Chow cohomology groups [Han00] and the motivic cohomology of Friedlander-
Voevodsky [FV00]. This result is a consequence of the quasi-isomorphism
between Bloch’s cycle complexes and Friedlander-Suslin complexes in the
smooth case [MVW06, Theo. 19.8], using the property of homotopy invari-
ance and spectral sequences. The motivic cohomology for a singular variety
is defined in terms of the cdh-cohomology. For this purpose we need to intro-
duce the cdh-topology, which permits to consider blow-up exact sequences
[MVW06], [FS02] and [VSF00].

The cdh-topology

Recall the definition of the Nisnevich topology [FV00]. A family of étale
morphisms {pi : Ui → X} is called a Nisnevich covering of X if it has the
Nisnevich lifting covering: if for every point x ∈ X there is an index i and
a point u ∈ Ui with pi(u) = x such that the induced map of residue fields
k(x)→ k(u) is an isomorpism. Nisnevich coverings satisfy the axioms for a
Grothendieck topology, which is called the Nisnevich topology in Sch(k).
This topology is intermediate between étale topology and Zarsiki topology.
To apply resolution of singularities, Voevodsky introduced the cdh-topology.

Definition 3.3.1 An abstract blow-up square is a diagram of pullback

E X ′

Σ X

p

i

with i : Σ ↪→ X a closed embedding and p : X̃ → X is a proper morphism
that induces an isomorphism (X ′−E)→ (X−Σ). The associated morphism
X ′
∐

Σ→ X is then called the abstract blow-up cover.

Definition 3.3.2 The cdh-topology (completely decomposed h-topology)4

on Sch(k) is the minimal Grothendieck topology generated by Nisnevich
covers and covers X ′

∐
Σ→ X corresponding to abstract blow-ups.

4“Completly decomposed” is the original term for Nisnevich topology, and the h-
topology was introduced in Voevodsky’s thesis.
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Example 3.3.3 Resolution of singularities is a form to generate cdh-coverings.

In order to work with singular varieties, Voevodsky defines a complex
associated to any separated scheme of finite type, to consider motivic coho-
mology by taking cdh-cohomology. We introduce the notion of an equidi-
mensional cycles to construct the Suslin-Friedlander chain complex ZSF (i).

Definition 3.3.4 Let T be a scheme of finite type over k, and r ≥ 0 an
integer. The presheaf Zequi(T, r) : Sm(k)op → Ab is defined as follows: for
U smooth, Zequi(T, r)(U) is the free abelian group generated by the closed,
irreducible subvarieties Z of U×T which are dominant and equidimensional
of relative dimension r over a component of U .

The presheaf Zequi(T, r) admits an extension to Corrfin(k), as a presheaf
with transfers. Moreover, Zequi(T, r) is a Zariski sheaf, and even étale sheaf,
for each T and r ≥ 0 [MVW06, Lect. 16, pag. 125]. If k admits resolution
of singularities, the Suslin-Friedlander motivic complexes ZSF (i) are
given by

ZSF (i) := C∗Zequi(Ai, 0)[−2i].

We regard ZSF (i) as a bounded above cochain complex of abelian groups
of presheaves associated to the simplicial presheaf on Sm(k), given by
CnZequi(T, r)(U) = Zequi(T, r)(U × ∆n). Recall that Voevodsky’s mo-
tivic complex [MVW06, Def. 3.1] is defined as the complex of presheaf
with transfers

Z(q) = C∗
(
Ztr(G∧qm )

)
[−q].

These complexes are actually complexes of sheaves with respect to the
Zariski topology [MVW06, Lemma 3.2]. The motivic cohomology of a
smooth scheme X is the hypercohomology of the motivic complex Z(q) in
the Zariski topology Hp

M(X,Z(q)) := Hq
Zar(X,Z(q)), see [MVW06, Def. 3.4].

Theorem 3.3.5 [MVW06, Theo. 16.7] There is a quasi-isomorphism be-
tween Voevodsky’s and Suslin-Friedlander’s complexes in the Zariski topol-
ogy:

Z(q)
qis−→ ZSF (q).

In particular, we have an isomorphism Hq
Zar(X,Z(q)) ∼= Hq

Zar(X,Z
SF (q)).

To incorporate resolution of singularities, motivic cohomology for singu-
lar varieties is given in terms of the cdh-topology [FV00, Def. 9.2]:
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Definition 3.3.6 For any scheme of finite type X over a field k, the mo-
tivic cohomology of X is defined by

Hq
M(X,Z(j)) := Hq

cdh

(
X,ZSF (j)cdh

)
.

It is important to consider this definition of motivic cohomology, because
the cdh-descent implies that for a 2-resolution there exists a long exact
sequence [FV00, p. 184]:

→ Hp
M(X,Z(q))→ Hp

M(X̃,Z(q))⊕Hp
M(Σ,Z(q))→ Hp

M(E,Z(q))→

If X• → X is a cubical hyperresolution of X, the motivic cohomology of X
can be obtained from the motivic cohomology of X• using descent:

Lemma 3.3.7 Let X be a quasi-projective variety. Then, the morphism
Hp

M(X,Z(q))→ Hp
M(X•,Z(q)) is an isomorphism.

Proof. The procedure is via induction in the 2-resolutions of a cubical
hyperresolution, as in [Han00, Theo. 2.3]. Let X• = red(X1

• , X
2
• . . . , X

r
•)→

X be a cubical hyperresolution of X, of lenght r. Then, X1
• → X is a

2-resolution given by the following square

E X̃

Σ X

The �+
r−1 × �+

0 -scheme red(X2
• , . . . , X

r
•) is a hyperresolution of the �+

0 -
scheme X1

1• = (E → Σ), its consists of E• and Σ•, augmented over E and
Σ respectively, this is a diagram of the form

E• E X̃

Σ• Σ X.

By cdh-descent, we have the following exact sequence

→ Hp−1
M (E,Z(q))→ Hp

M(X,Z(q))→ Hp
M(X̃,Z(q))⊕Hp

M(Σ,Z(q))→

By induction hypothesis, the morphisms induced by the augmentation

Hp−1
M (E,Z(q))→ Hp−1

M (E•,Z(q)) and Hp
M(Σ,Z(q))→ Hp

M(Σ•,Z(q))
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are isomorphisms. Hence by five-lemma the augmentation X• → X induces
an isomorphism Hp

M(X,Z(q))→ Hp
M(X•,Z(q)). �

For X ∈ Sm(k) and k perfect, if F is a homotopy invariant sheaf with
transfers on the cdh-topology [FV00, Theo. 5.5]:

Hq
cdh(X,Fcdh) = Hq

Nis(X,FNis) = Hq
Zar(X,FZar).

Therefore, if X is smooth and k a perfect field, motivic cohomology is com-
puted by Zariski hypercohomology:

Hq
M(X,Z(j)) ∼= Hq

Zar(X,Z
SF (j)Zar) = HomDMgm(k)

(
M(X),Z(j)[q]

)
.

In general if k admits resolution of singularities, for any scheme X of finite
type over k, the motivic cohomology has the following presentation:

Hq
M(X,Z(j)) = HomDMeff

− (k)

(
M(X),Z(j)[q]

)
.

3.3.8 The presheaf of Bloch’s cycle complex. In the smooth case, the
isomorphism (2.2.9) between motivic cohomology and higher Chow groups
is given by the relation between Bloch’s cycle complexes and Friedlander-
Suslin complexes. For this, we need a “sheaffified” version of Bloch’s cycle
complex as follows:

U 7→ Zr(U × Ar, •)
for U ∈ XZar. Then, we have:

Proposition 3.3.9 For a scheme X of finite type over a field k, we have a
quasi-isomorphism of complexes

Zr(X × Ar, •) qis−→ RΓ(XZar,Z
r(−× Ar, •)).

Proposition 3.3.10 ([MVW06, Theo. 19.8]) For X ∈ Sm(k), the mor-
phism

ZSF (r)[2r](X)→ Zr(X × Ar, •)
is a quasi-isomorphism of complexes of Zariski sheaves.

These quasi-isomorphis define the following isomorphism:

CHr(X,m) ∼= CHr(X × Ar,m) ∼= H−mZar (X,Zr(X × Ar, •))
∼= H2r−m

Zar (X,ZSF (r)[2r](X)) ∼= H2r−m
M (X,Z(r)).

In the singular case, one way to compute Voevodsky’s motivic coho-
mology is via Hanamura’s Chow cohomology groups. In fact, we have the
following comparison theorem:
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Theorem 3.3.11 Let X be a quasi-projective variety over a field k. Then,
there exists an isomorphism

CHCq(X,n) ∼= H2q−n
M

(
X,Q(q)

)
.

Proof. Let X• → X be an augmented cubical hyperresolution with smooth
components Xp. By [MVW06, Theo. 19.8], there is a quasi-isomorphism of
complexes of Zariski sheaves:

C∗Zequi(Ar, 0)(Xp) = ZSF (r)[2r](Xp)
qis−→ Zr(Xp × Ar, •).

The compatibility with the face morphisms induces a quasi-isomorphism of
total complexes

ZSFX• (r)[2r]
qis−→ Zr(X• × Ar)∗.

There are two convergent spectral sequences

Ep,q1 (r) := CHr(Xp × Ar,−q) ⇒ CHCr(X × Ar, p− q)
Ep,q1 (r) := H2r+q

M

(
Xp,Q(r)

)
⇒ H2r−p+q

M

(
X•,Q(r)

)
with an isomorphism of total cohomologies

CHCr(X × Ar, p− q) ∼= H2r−p+q
M

(
X•,Q(r)

)
.

By homotopy property CHr(Xp×Ar,−q) ∼= CHr(Xp,−q), and since X•×Ar
defines an hyperresolution of X × Ar. Via Hanamura’s spectral sequence,
we have an isomorphism CHCr(X, p− q) ∼= CHCr(X × Ar, p− q). �

3.4. Voevodsky’s mixed motives

The existence of a category of mixed motives is still conjectural, despite this
there are several candidates of triangulated categories of mixed motives.
The constructed triangulated tensor category is expected to be the derived
category of the conjectural category of mixed motives, for this it is expected
that a t-structure can be extracted, so that the heart is the category of mixed
motives (with the properties expected by Deligne and Beilinson) [Bei87]. In
this direction, there are various constructions:

− Hanamura [HanI, HanII, HanIII]

− Levine [Lev98]

− Voevodsky [Voe00]
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which should ideally satisfy the expected properties by the Beilinson’s con-
jectures of the derived category of abelian category of mixed motives. Al-
though the construction of mixed motives is still conjectural, the category
does give rise to the groups of motivic cohomology, as can be seen in the pre-
vious section, which satisfies all the expected properties [Bei87], [Lic84]. In
this section we will give a brief overview of the construction of Voevodsky’s
motives, the most influential triangulated category of motives. Namely, we
will give the construction of geometric motives DMgm(k), as well as a sheaf-
theoric construction of the motivic complexes DMeff

− (k). In [Han00] and
[Lev98], Hanamura and Levine respectively apply the technique of cubical
hyperresolutions in the context of mixed motives to extend the definition of
motives to schemes of finite type over k. They give two other approxima-
tions of the triangulated category of mixed motives over a field that admits
resolution of singularities.

3.4.1 Voevodsky’s mixed motives. Let k be a perfect field that admits
resolution of singularities, and Sm(k) the category of smooth schemes of
finite type over k. For this construction, see [MVW06] and [VSF00].

Definition 3.4.2 Let X,Y ∈ Sm(k). The group Corrfin(X,Y ) of finite
correspondences form X to Y is the abelian group generated by integral
subschemes Z ⊂ X × Y such that:

− the projection prX : Z → X is finite

− the image prX(Z) ⊂ X is an irreducible component of X.

The composition of correspondences is given as follows: For X,Y,W ∈
Sm(k), and α ∈ Corrfin(X,Y ), β ∈ Corrfin(Y,W ). Suppose that X and Y
are irreducible. Then each irreducible component C of |α| ×W ∩X × |β| is
finite over X and prX(C) = X. Then, the composition is

α ◦ β := pr∗XW
(
pr∗XY (α) · pr∗YW (β)

)
.

The category of Corrfin(k) is the category with the same objects as Sm(k)
and morphisms

Corrfin(k)(X,Y ) := Corrfin(X,Y )

with the composition defined above. There exists a functor

Sm(k)→ Corrfin(k)
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that sends X to [X] (viewed as an object in Corrfin(k)) and a morphism
f : X → Y to Γf = f∗ ∈ Corrfin(X,Y ). The product ×k on Sm(k) induces
a product on Corrfin(k). This makes Corrfin(k) an additive and tensor
category. Consider the bounded homotopy category Kb

(
Corrfin(k)

)
, this a

tensor triangulated category.

Definition 3.4.3 The category DMeff
gm(k) of effective geometric motives

is obtained in the following way:

(1) Localize Kb
(
Corrfin(k)

)
with respect to the thick subcategory gener-

ated by complexes of the form:

(a) Homotopy. prX∗ : [X × A1]→ [X]

(b) Mayer-Vietoris. [U ∩ V ] → [U ] ⊕ [V ] → [X], where U and V
are Zariski open subschemes of X such that X = U ∪ V .

(2) The category DMeff
gm(k) is the pseudo-abelian completion of the result-

ing quotient category.

The category DMeff
gm(k) then is triangulated tensor category [BS01]. Finally,

the category of geometric motives DMgm(k) is obtained by inverting the
Lefschetz motive. For any X ∈ Sm(k), the structural morphism X →
Spec(k) gives us in DMeff

gm(k) a morphismMgm(X)→ Z. There is a canonical
dintinguished triangle

M̃gm(X)→Mgm(X)→ Z→ M̃gm(X)[+1]

where M̃gm(X) is the reduced motive of X determined in Kb
(
Corrfin(k)

)
by the complex [X] → Spec(k). For a k-rational point in X, there is a

decomposition Mgm(X) = Z ⊕ M̃gm(X) in DMeff
gm(k). The Tate motive

is Z(1) := M̃gm(P1)[2]. For n ≥ 0, set Z(n) := Z(1)⊗n. For any object
M ∈ DMeff

gm(k), the Tate twist is given by M(n) := M ⊗ Z(n).

Definition 3.4.4 The category DMgm(k) is obtained from DMeff
gm(k) by in-

verting Z(1). More precisely, objects of DMgm(k) are pairs of the form (A, p)
where A ∈ DMeff

gm(k) and p ∈ Z. The morphisms are given by

DMgm(k)
(
(A, p), (B, q)

)
:= lim

r≥−p,−q
DMeff

gm(k)
(
A(r + p), B(r + q)

)
.
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The resulting category DMgm(k) is a rigid tensor linear triangulated
category [MVW06, Theo. 20.17]. The four steps in the construction of
DMgm(k) can be summarized in the following diagram:

Sm(k)→ Corrfin(k)→ Kb
(
Corrfin(k)

)
→ Kb

(
Corrfin(k)

)
/〈HI +MV 〉

pse. ab−→ DMeff
gm(k)

Z(1)−1

−→ DMgm(k).

3.4.5 Properties of DMgm(k). The main properties of the category
DMgm(k) are:

− Kunneth formula: M(X × Y ) = M(X)⊗M(Y ).

− Homotopy invariance: M(X × A1) = M(X).

− Mayer-Vietoris: For X = U ∪ V , there is a distinguished triangle

M(U ∩ V )→M(U)⊕M(V )→M(X)→M(U ∩ V )[1].

− Projective bundle: Let E be a vector bundle over X of rank n+ 1.
Consider E = P(E)→ X its projectivization, then we have:

M(E) ∼=
n⊕
i=0

M(X)⊗ Z(i)[2i].

− Blow-up triangle: Let Z ⊂ X be a smooth closed subscheme, BlZX
the blow-up of X along Z with exceptional divisor E. Then, there is
a distinguished triangle

M(E)→M(BlZX)⊕M(E)→M(X)→M(E)[1].

− Gysin triangle: If Z ⊂ X is a smooth closed subscheme of codimen-
sion c in X, there exist a distinguished triangle

M(X − Z)→M(X)→M(Z)(c)[2c]→M(X − Z)[1].

− Duality: The category DMgm(k) is rigid, i.e. there is a duality functor
(−)∨ : DMgm(k) → DMgm(k)opp. For X smooth and projective of
dimension d, we have

M(X)∨ = M(X)(−d)[−2d].
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− Adjunction: The functor −⊗B∨ is right adjoint of −⊗B.

Remark 3.4.6 The construction of DMgm(k) is based on the model of the
construction of Motrat(k), the Grothendieck pure motives [MNP13]. The
construction of DMgm(k) being covariant, contrary to Motrat(k), which was
cohomological. The relation between these categories is the following: there
exists a fully faithful embedding

Motrat(k) ↪→ DMgm(k)

this is given by the fact that

DMgm(k)(M(X),M(Y )) ∼= CHdY (X × Y ) = Corr0
rat(Y,X).

Motivic Complexes

The deepest properties, such as Blow-up, Gysin and Duality, are proved
via an embedding of DMeff

gm(k) into a triangulated category of sheaves with

transfers DMeff
− (k), the category of motivic complexes. We will give here a

sketch of Voevodsky’s construction.

Definition 3.4.7 A presheaf with transfers is a contravariant additive
functor F : Corrfin(k)→ Ab. The presheaf is called homotopy invariant
if the natural morphism pr∗X : F(X)→ F(X × A1) is an isomorphism.

Example 3.4.8 The prototype of a presheaf with transfers is Corrfin(−, X).

The category of presheaf with transfers PST(k) forms an abelian cate-
gory with enough injectives/projectives. Nisnevich (Zariski, étale) covering
generate a Grothendieck topology, the Nisnevich (Zariski, étale) topology
on Sch(k).

Definition 3.4.9 A presheaf with transfers F is called a Nisnevich sheaf
with transfers (Zariski, étale) if the composition Sm(k) → Corrfin(k) →
Ab is a sheaf for the Nisnevich (Zariski, étale) topology.

Denote the category of Nisnevich sheaf with transfers by Nistr(k). Again,
the category Nistr(k) is an abelian category with enough injectives. There
are fully faithful inclusions éttr(k) ⊆ Nistr(k) ⊆ Zartr(k) ⊆ PST(k).
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Definition 3.4.10 Let D−(Nistr(k)) be the derived category of bounded
above complexes of Nisnevich sheaves with transfers. The category DMeff

− (k)
of effective motivic complexes is the full subcategory of D−(Nistr(k))
of bounded above complexes of Nisnevich sheaf with transfers whose coho-
mology sheaves are homotopy invariant.

3.4.11 Let F be a presheaf with transfers. The Suslin complex C∗(F) is
the complex of presheaves on Sm(k) defined by

Cn(F)(U) := F(U ×∆n)

where the differentials are alternanting sums of pullbacks to the faces. By
definition the sheaf Cn(F) is placed in degree −n, making C∗(F) a complex
that is bounded above, let C∗(F) the complex defined by the change of
indices Cn(F) := C−n(F). If F is a Nisnevich sheaf with transfers, the Suslin
complex C∗(F) has homotopy invariant cohomology sheaves [And04, Cor.
19.2.5.2]. This construction defines a functor C∗ : Nistr(k) → DMeff

− (k).
Now we give a way to build sheaves with transfers, this allows us to associate
a motivic complex to any variety X as follows. We denote by Ztr(X) the
presheaf with transfers defined by

Ztr(X)(U) := Corrfin(U,X)

with U ∈ Sm(k), this defines a functor Ztr(−) : Sch(k) → PST(k). We
can see that the presheaf Ztr(X) is an étale sheaf with transfers [MVW06,
Lemma 6.2]. Hences Ztr induces a functor

Ztr : Kb
(
Corrfin(k)

)
→ D−(Nistr(k)).

The motivic complex associated to X is the class C∗(X) := C∗(Ztr(X))
in DMeff

− (k). Explicitly, Cn(X) is the presheaf in Corrfin(k) given by

Cn(X)(U) = Corrfin(U ×∆n, X).

In particular, if X is smooth, then Ztr(X) is the presheaf in Corrfin repre-
sented by X.

Theorem 3.4.12 (Localization Theorem, [Voe00, 3.2.3]) The functor
C∗ extends to a functor

RC∗ : D−(Nistr(k))→ DMeff
− (k)

which is left adjoint to the natural embedding. The functor RC∗ identifies
DMeff

− (k) with the localization of D−(Nistr(k)) with respect to the thick sub-
category generated by complexes of the form

Ztr(X × A1)→ Ztr(X), for X ∈ Sm(k).
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Theorem 3.4.13 (Embedding Theorem, [Voe00, 3.2.6]) The composi-
tion functor

RC∗ ◦ Ztr : Kb
(
Corrfin(k)

)
→ DMeff

− (k)

factors through DMeff
gm(k), and the functor i : DMeff

gm(k)→ DMeff
− (k) is a fully

faithful embedding. In fact, we have a commutative diagram

Kb
(
Corrfin(k)

)
D−(Nistr(k))

DMeff
gm(k) DMeff

− (k)

Ztr

M RC∗

i

where the Suslin complex C∗(X) = RC∗(Ztr(X)) = i(M(X)).

3.4.14 The motives M(X) and M c(X) [Voe00, Sect. 4]. For X ∈
Sch(k), we define the motive M(X) as the class of C∗(X) in DMgm

− (k).
By embedding theorem, this construction extends the definition of M(X)
for X ∈ Sm(k) given in (3.4.3). For motives with compact support, con-
sider the following definition. Let X ∈ Sm(k) and Y ∈ Var(k), the
group Corrq−fin(X,Y ) of quasi-finite correspondences from X to Y is
the abelian group generated by integral subschemes Z ⊂ X × Y such that
prX : Z → X is quasi-finite over an irreducible component of X. This allows
us to consider the following Nisnevich sheaf with transfers, for X ∈ Sch(k):

Zctr(X)(U) := Corrq−fin(U,X).

Then, the motivic complex with compact support of X is defined by
Cc∗(X) := C∗(Zctr(X)). The motive with compact support M c(X) is
given as the class of Cc∗(X) in DMgm

− (k).

Using the blow-up and Gysin distinguished triangles we have the follow-
ing important result:

Corollary 3.4.15 ([Voe00, Cor. 4.1.4, 4.1.6]) Let k a field which admits
resolution of singularities. Then for any scheme X of finite type over k, the
motives M(X) and M c(X) belong to the triangulated category DMeff

gm(k).

3.4.16 Comparison theorems. We denote by DM(k) the triangulated
category of motives constructed in [Lev94]. In char(k) = 0, Levine [Lev94,
Part 1, Chap. VI, Theo. 2.5.5] proves that there is an equivalence of tri-
angulated categories DM(k)→ DMgm(k) between Levine’s and Voevosky’s
motives. The comparison between Hanamura’s [HanI] and Voevodsky’s mo-
tives is due to M. Bondarko [Bon09]. Bondarko proves that there exists an
(anti-)equivalence of triangulated categories of motives D(k)→ DMgm(k).



Chapter 4

A regulator morphism for singular varieties

The KLM-formula is first defined for projective and smooth varieties at
complex level, in terms of cubical Bloch’s cycle complex and currents, which
defines the motivic cohomology and absolute Hodge comology respectively
[KLM06]. In [KL07], the authors extend this formula for open smooth va-
rieties, and complete normal crossing varieties. This formula admits exten-
sion to complete singular varieties, then all quasi-projective varieties. In
this generalization, Higher Chow groups is a Borel-Moore homology theory
and is replaced by Voevodsky’s motivic cohomology, which is identified with
higher Chow cohomology groups. The procedure is via cubical hyperreso-
lutions [GNPP88] and [GNA02]. In this chapter we will describe explicitly
the complexes that define the regulator morphism in the singular case:

regX : CHCr(X,m) ∼= H2r−m
M (X,Q(r))→ H2r−m

H (X,Q(r)).

This morphism is first described in terms of double (triple) complexes.
Then the cycle-class morphism is given by the cohomology of the total com-
plexes. The Abel-Jacobi morphism is evaluated on the graded pieces through
the spectral sequence, and described page to page by the morphism of spec-
tral sequences between motivic cohomology and absolute Hodge cohomology.

4.1. The regulator for a complete NCD

Consider the case where Y ⊂ X is a complete normal crossing divisor. For
Y =

⋃N
i Yi, we consider the following notation:

− YI =
⋂
i∈I Yi, I = {i1, . . . , i`},

− Y[`] =
∐
|I|=` YI ,

− jI,j : YI∩{j} ↪→ YI ,

− Y I =
⋃
j /∈I YI∩{j} ⊂ YI .
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This produces a semi-simplicial hyperresolution a : Y• → Y :

· · · Y[3] Y[2] Y[1] Ya

with smooth and projective components, and a satisfies the cohomological
descent. To construct the cycle class morphism associated to Y , we need
to introduce double complexes to give us spectral sequences that compute
motivic cohomology and Deligne cohomology. According to [KLM06, KL07]
and [GGK10], there is a fourth quadrant double complex:

Z
i,j
Y (r) := Zr(Y[i],−j) :=

⊕
|I|=i

ZrR(YI ,−j)Y I

with differentials ∂B : Zi,jY (r) → Z
i,j+1
Y (r) (vertical, Bloch) and horizontal

∂J : Zi,jY (r)→ Z
i+1,j
Y (r). The associated total complex is

Z•Y (r) := s•Z•,•Y (r) and ∂ = ∂B ± ∂J .

The motivic cohomology of Y is given by

H2r+∗
M (Y,Z(r)) := H∗(Z•Y (r), ∂).

For Deligne cohomology, we consider the following double complex

Ki,j
Y (r) := Bi,j

Y (r)⊕ F rDi,j
Y (r)⊕Di,j−1

Y (r) :=
⊕
|I|=i

C2r+j
D (YI ,Q(r))Y I

:=
⊕
|I|=i

{
C2r+j

# (YI ,Q(r))⊕ F rD2r+j
# (YI)⊕D

2r+j−1
# (YI)

}
where C•#(YI ,Q(r)) := I•{Y I}(YI)⊗Z Q(r) are the locally intersection cur-

rents [KL07, Def. 8.5], and D•#(YI) := N{Y I}(YI) denotes the (locally)
normal currents. The associated total complex is

C•D,Y (r) := s•K•,•Y (r).

The Deligne cohomology is defined by

H2r+∗
D (Y,Q(r)) := H∗(Y, s•K•,•Y (r)) = H∗(Y•,K

•,•
Y (r)).

The KLM-currents produces a morphism of double complexes

Z
i,j
Y (r) → Ki,j

Y (r)

α 7→ (−2πi)r+j
(
(2πi)−jTα,Ωα, Rα

)
.
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This is a moprhism on 0th-page of both spectral sequences. Then, the mor-
phism of total complexes:

reg : Z•Y (r)→ C•D,Y (r)

is the regulator morphism for Y on the level of complexes. The cycle-class
morphism of total cohomologies

clY : H2r+∗
M (Y,Q(r))→ H2r+∗

D (Y,Q(r))

is compatible with natural weight filtration arising from the double com-
plexes.

4.2. The absolute Hodge cohomology

Sheaves, cohomology and cohomological descent

Let X be a quasi-projective variety over C. Consider a cubical hyperres-
olution red(X1

• , . . . , X
r
•) → X, with associated augmented semi-simplicial

scheme X• → X [GNPP88]. Cohomological descent is a technique intro-
duced by Deligne [HodgeIII], to extend the notion of mixed Hodge struc-
tures to non-smooth varieties. This is a variant of the technique given by
Čech. For example, this property allows us for a 2-resolution

E X̃

Xsing X

j

q p

i

to obtain a blow-up exact sequence on cohomology. For a sheaf F on X, we
have an exact sequence

· · · → H i(X,F)→ H i(X̃, p∗F)⊕H i(Xsing, i
∗F)→ H i(E, (p ◦ j)∗F)→ · · ·

In general, a sheaf F• on a semi-simplicial scheme X• is a collection of
sheaves Fp on Xp, and morphisms of sheaves di : d

∗
iF

q−1 → Fq satisfying the
semi-simplicial identities. A morphism of sheaves F : F• → G• on X• is a
family of morphisms {F p : Fp → Gp} compatible with the face morphisms.
For example, for a sheaf F• on X•, the Godement resolutions C•Gdm(Fp) give
injective resolutions of Fp, and fit together to give an injective resolution
C•Gdm(F•) of F• on X•. This allows us to define the cohomology of a semi-
simplicial scheme X• with values on F•. The abelian groups

F q,p := Γ(Xp,C
q
Gdm(Fp))
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form part of a double complex. We define

Hk(X•,F
•) := Hk(s•(F •,•)).

For an augmentation a : X• → X and a sheaf F• on X•, the sheaves
a∗C

q
Gdm(Fp) form a double complex of sheaves on X; its associated total

complex defines

Ra∗F
• := s•

[
a∗C

•
Gdm(F•)

]
.

This complex computes the cohomology of X•, and we have

Hk(X,Ra∗F
•) = Hk(X•,F

•).

In general, we have natural adjunction morphisms of sheaves on X

F → Ra∗(a
∗F).

Definition 4.2.1 An augmented semi-simplicial scheme a : X• → X has
the property of cohomological descent if the natural morphism

F → Ra∗(a
∗F)

is an isomorphism in D+(QX), for any sheaf F on X.

In this case, we have a spectral sequence

Ep,q1 = Hq(Xp, a
∗
pF)⇒ Hp+q(X,F).

Remark 4.2.2 For an augmented semi-simplicial hyperresolution a : X• →
X, cohomological descent allows us to study the cohomology of a singular
variety in terms of the cohomology groups of smooth varieties lying over it.

Mixed Hodge complexes

Mixed Hodge complexes constitute a technique introduced by P. Deligne
in [HodgeIII] to extend his theory of Hodge structures to the case of the
cohomology of singular varieties, using simplicial resolutions. Recall that a
mixed Hodge complex K• is given by

− a filtered complex (K•Q,W•),

− a bifiltered complex (K•C,W•, F
•),
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− a filtered quasi-isomorphism (K•Q,W•)⊗ C→ (K•C,W•).

satisfying the conditions given in (2.3.1). An important result about mixed
Hodge complex is the following theorem [HodgeIII, 8.1.9]:

Theorem 4.2.3 Let K• be a mixed Hodge complex. Then H∗(K•) has a
mixed Hodge structure:

− The Hodge filtration is induced by

F pHm(K•C) = Im
(
Hm(F pK•C)→ Hm(K•C)

)
moreover, the espectral sequence (K•C, F ) degenerates at E1.

− The weight filtration is defined by

W`+m(K•Q) = Im
(
Hm(W`K

•
Q)→ Hm(K•Q)

)
and the espectral sequences (K•Q,W ) and (GrpF ,W ) degenerates at E2.

Let U be a smooth quasi-projective variety over C. By Nagata [Nag62] and
Hironaka’s resolution of singularities [Hir64] we can find a compatification
U ↪→ X with X smooth projective, and Y := X − U a normal crossing
divisor. In [KL07], Kerr and Lewis construct a mixed Hodge complex asso-
ciate to the pair (X,U), this is a Gysin complex given in terms of the total
complexes corresponding to semi-simplicial scheme Y [•], augmented to X.

Theorem 4.2.4 The following system given by:

− (K•Q,W ) := (s•C(r),W•),

− (K•C,W, F ) := (s•D(r),W•, F
•)

defines a mixed Hodge complex, with filtrations W•(=
′W−•) and F • as

in (2.5.3). In particular, the complex RΓ(K•) gives us the absolute Hodge
cohomology of U .

4.2.5 Guillén-Navarro’s extesion criterion [GNA02]. The above con-
struction defines a functor

K•H : Sm(C)→MHC, (4.1)

where the complex

RΓH(K•) = Cone
(
Ŵ0s

•C(r)⊕ F 0Ŵ0s
•D(r)→ Ŵ0s

•D(r)
)
[−1]
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defines the absolute Hodge cohomology of U , and Ŵ is Deligne’s décalage
filtration. Deligne shows that for any complex variety X, we can construct
a functorial mixed Hodge complex associated to X:

K•H : QuProj(C)→MHC

For this, Deligne in [HodgeIII] extends the notion of mixed Hodge complex
to quasi-projective complex algebraic varieties with singularities, using its
simplicial hypercoverings. Here we use the alternative technique of cubical
hyperresolutions developed in [GNPP88]. In [GNA02], Guillen and Navarro-
Aznar developed a general descent theory, aided by the theory of cubical
hyperresolutions. This allows to establish an extension criterion of functors
defined on the category of smooth varieties, to the category of all varieties
and define the weight filtration for any complex variety. This technique
permits to extend the above construction, defined in (2.5.1-2.5.3), via the
following theorem:

Theorem 4.2.5 ([GNA02, Theorem 2.1.5]) There is an essentially unique
functor

K•
′

H : QuProj(k)→ Kb(MHC)

extending the functor K•H : Sm(C)→MHC of (4.1), such that:

(D) If X• is an elementary acyclic square (abstract blow-up), then sK•
′

H(X•)
is acyclic (abstract blow-up).

Remark 4.2.6 The extension criterion is the same technique that Hana-
mura applies in [Han00] to the higher Chow groups. Other applications
are in Grothendieck’s theory of motives, and the weight filtration in alge-
braic K-theory. It is also closely related to the conditions of descent in the
cdh-cohomology (or h-topology).

4.2.7 Construction. Let U be an arbitrary quasi-pojective variety over
C, with compatification U ↪→ X. Then, we may take a hyperresolution
of the pair (X•, U•) → (X,U), these are hyperresolutions X• → X and
U• → U , such that Y• := X• −U• is a simplicial NCD, i.e. Yp := Xp −Up is
a normal crossing divisor for all p

Y• X• U•

Y X U

The semi-simplicial scheme given by the cubical hyperresolutions U• = X•−
Y• → U satifies the descent cohomological property [GNPP88].



A regulator morphism for singular varieties 73

Definition 4.2.8 An A-mixed Hodge complex K• over U• consists of:

(i) a filtered complex (K•Q,W•) ∈ D+F(U•,Q),

(ii) a bifiltered complex (K•C,W•, F
•) ∈ D+F2(U•,C),

(iii) a filtered quasi-isomorphism (K•Q,W•)⊗C→ (K•C,W•) in D+F(U•,C)

such that the restriction of K• to each Up is an A-mixed Hodge complex.

In order to construct the absolute Hodge cohomology of U , singular
and non-compact, we need to describe explicitly a mixed Hodge complex
associated to U . This construction is given component by component in the
hyperresolution of U . Applying this construction to each Up = Xp−Yp, this
family of filtered complexes forms a filtered complex over U•, and we obtain
a simplicial mixed Hodge complex K• ∈MHC(U•). Considering the total
(simple) complex, we have a mixed Hodge complex over U .

Proposition 4.2.9 Let U• ↪→ X• be a good compactification of a smooth
simplicial variety U•, with Yp = Xp − Up a normal crosing divisor. Taking
K•Q as the simple complex given on each component Xp−Yp by Kp

Q = s•C(r)
as in (2.5.1). In the same way, we define Kp

C = s•D(r). These complexes are

given by the resolution Y
[•]
p → Y

[0]
p = Xp, together with the usual filtrations

W• and F • forms a simplicial mixed Hodge complex.

Absolute Hodge cohomology for singular varieties

In characteristic zero, using resolution of singularities we can produce a
cdh-covering X• → X, for any variety X. Then, a natural way to ex-
tend a functor (cohomology theory) defined on smoooth schemes to singular
varieties is to use cdh-covers. More concretely, hyperresolutions is a way
to generate this type of covers. Consider an arbitrary U ∈ QuProj(k).
The (polarizable) mixed Hodge complex is given in terms of hyperresolution
(X•, U•) → (X,U). By definiton, the absolute Hodge cohomology of one
component Up of U• is computed by the complex

RΓH(K•) = Cone•
(
Ŵ0K

•
Q ⊕ F 0Ŵ0K

•
C → Ŵ0K

•
C
)
[−1].

According to Kerr and Lewis [KL07, 2.8], the above cone complex can be
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seen as the total complex of the following double complex:

H(r)i,jUp :=



0, j > 1
text

ker(d) ⊂ D2(r+1)(Y
[−i]
p ), j = 1

text

ker(d) ⊂ C2(r+i)
(
Y

[−i]
p ,Q(r + i)

)⊕
ker(d) ⊂ F 0D2(r+1)(Y

[−i]
p )

⊕
D2r+2i−i(Y

[−i]
p ), j = 0

text

C2r+2i+j
D

(
Y

[−i]
p ,Q(r + i)

)
, j < 0

where Y
[−i]
p ’s are the components given by the semi-simplicial hyperreso-

lution Y
[•]
p → Yp → Xp, associated to the normal crossing divisor Yp and

augmented over Xp. By [KL07, (2.10)], this construction defines a distin-
guished triangle

s•HYp(r)→ s•HXp(r)→ s•HUp(r)
+1−→

where s•H•,•Up (r) computes the absolute Hodge cohomology of Up. This con-
struction defines for a semi-simplicial hyperresolution U• → U a triple com-
plex, denote this complex by HU•(r). First consider the double complex
H
i,j
Up

(r) over Up, then considering the total complex s•HU•(r) on each smooth

component on the simplicial variety, we have the complex s•HU (r). The ab-
solute Hodge cohomology of U is defined by any simplicial mixed Hodge
complex of U• via the descent given by the augmentation a : U• → U .

− Using the extension criterion of Guillén-Navarro [GNA02], we can extend
the definition of absolute Hodge cohomology from smooth varieties to com-
plete singular varieties, or more generally, to quasi-projective varieties, using
the hyperresolution of the pair U ↪→ X.

Definition 4.2.10 For a quasi-projective variety U over C, the absolute
Hodge cohomology of U is defined by

Hq
H

(
U,Q(r)

)
:= Hq(U, sRa∗HU•(r)) = Hq(U•,HU•(r)).

This definition is similar to one given in [Nav08, A.6], and is well-defined,
because it is independent of the choice of the hyperresolution U• → U . More-
over, is indepedent of the compactification U• ↪→ X• of the hyperresolution
[Jan88]. There is a spectral sequence of absolute Hodge cohomology [BZ90]:

Ep,q1 (r) := Hq
H(Up,Q(r))⇒ Hp−q

H (U•,Q(r)) = Hp−q
H (U,Q(r)).
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The cohomological properties of smooth varieties naturally extend to the
case of singular varieties, in addition the descent gives us a long exact se-
quence

→ Hr−1
H (E,Q(m))→ Hr

H(X,Q(m))→ Hr
H(Σ,Q(m))⊕Hr

H(X̃,Q(m))→

for a 2-resolution of the form

E X̃

Σ X.

4.3. A regulator for singular varieties

Let X be a projective, singular variety over C. In this case, the construction
of regulator is based on a diagram given by the cubical hyperresolution

· · · X3 X2 X1 Xa

which exists by resolution of singularities [GNPP88]. The basis of the con-
struction is the model given by the case of a NCD [KL07, Pro. 8.12], with
each Xp a smooth and projective variety. In this case, the absolute Hodge
cohomology of Xp is computed by the Deligne complex. Then, the regulator
morphism on the level of complexes is given by [KLM06, 5.5]:

Zp,q(r) := Z
p,q
R (Xp,−q)

KLM−→ Hp,q(r)

α 7→ (−2πi)r+q
(
(2πi)−qTα,Ωα, Rα

)
.

where the complex Hp,q(r) is quasi-isomorphic to Deligne complex. Organiz-
ing these morphisms in a double complex, it defines a fourth quadrant double
complex. Since all components in the simplicial hyperresolution X• → X is
smooth and projective, there is a filtration on the level of complexes given
by the “weight” filtration on the absolute Hodge complex that induces a
spectral sequence. Then, the regulator morphism and the Bloch’s cycle-
class morphism extend to cycle-class morphism of singular and projective
varieties, defined by Hanamura’s Chow cohomology groups.

Theorem 4.3.1 There is a morphism of (double) complexes in the derived
category Zp,q(r) → Hp,q(r) given by the KLM-formula, with a morphism of
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total complexes ZSFX• (r)[2r] ' Zr(X•)
∗ → HX•(r). This regulator morphism

induces a cycle-class morphism on the total cohomologies

H2r−∗
M (X,Q(r)) ∼= CHCr(X, ∗)→ H2r−∗

H (X,Q(r)).

Such a morphism coincides, when X is smooth, with the KLM-regulator
[KLM06].

Proof. Let X be a singular, projective variety over C. Consider a cubical
hyperresolution X• → X, where each component Xp is smooth and projec-
tive. Under the quasi-isomorphism ZSF (r)[2r](Xp) ' Zr(Xp × Ar, •), and
using the KLM-morphism we have a morphism of spectral sequences:

H2r+q
M (Xp,Q(r)) H2r+q

M (X,Q(r))

CHr(Xp,−q) CHCr(X, p− q)

H2r+q
H (Xp,Q(r)) H2r−p+q

H (X,Q(r))

∼= ∼=

cl cl

These are morphisms of E1-pages of the spectral sequences induced by KLM-
formula given in the E0-page by Z

p,q
R (Xp,−q)→ Hp,q(r).

Example 4.3.2 For a projective curve C over C, consider the normalization
η : C̃ → C with singular locus Σ ⊂ C, and E = η−1(Σ) (with reduced scheme
structure). We have a cartesian square

E C̃

Σ C

η

i

where i is the embedding. The total (cone) complex

Zr(C, •)∗ := Cone
{
Zr(C̃, •)⊕ Zr(Σ, •)→ Zr(E, •)

}
[−1]

computes the motivic cohomology of C. The absolute Hodge cohomology of
C is given by the complex

H•C(r) := Cone
{
H
•,•
C̃

(r)⊕H
•,•
Σ (r)→ H

•,•
E (r)

}
[−1].
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By definition of the triangulated estructure, and realizations given on the
level of double complexes [KL07, Ex. 3.1], we have the following regulator:

Zr(C, •)∗ → H•C(r).

The above square induces a long exact sequence on absolute Hodge coho-
mology and motivic cohomology, by descent:

CHr(E,m+ 1) H2r−m
M (X,Q(r)) CHr(X̃,m)⊕ CHr(Σ,m)

H2r−m−1
H (E,Q(r)) H2r−m

H (X,Q(r)) H2r−m
H (X̃,Q(r))⊕H2r−m

H (Σ,Q(r)).
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Chapter 5

Some computations of motivic cohomology

Let X be a singular, quasi-projective variety. A cubical hyperresolution
X• → X in the sense of [GNPP88] is a semi-simplicial scheme consisting
of smooth schemes Xp for 0 ≤ p ≤ N with some N , and face morphisms
di : Xp → Xp−1 satisfying certain identities. The cubical hyperresolution
induces a fourth quadrant double complex

Zr(X0, •)
d∗−→ Zr(X1, •)

d∗−→ · · · d∗−→ Zr(XN , •).

The cohomological cycle complex Zr(X•)
∗ of X is the total complex of above

double complex, and the Chow cohomology group (or motivic cohomol-
ogy) is by definition the mth-homology of this complex: CHCr(X,m) =
Hm

(
Zr(X, •)∗

)
. There is an associated spectral sequence

Ep,q1 (r) := CHr(Xp,−q)⇒ CHCr(X, p− q) ∼= H2r−p+q
M (X,Z(r))

which does not depend of the choice of cubical hyperresolution X• → X
[Han00]. Let X be a normal variety of dimension d ≥ 3. Recall that the
singular locus Xsing is of codimension ≥ 2. The resolution of singularities of
X along Xsing induces an exact sequence of motivic cohomology groups:

→ H2r−m
M (X,Z(r))→ CHr(X̃,m)⊕ CHr(Xsing,m)→ CHr(E,m)→

When X is a smooth, the Bloch’s higher Chow groups vanish in negative
degrees. In codimension r = 1, we have H2−m

M (X,Z(1)) = 0 for m 6= 0, 1;
H2

M(X,Z(1)) = Pic(X) and H1
M(X,Z(1)) = Γ(X,O∗X) [Blo86a]. This fact

implies, for any variety, that CHC1(X,m) = 0 for m > 1.

5.1. Motivic cohomology of varieties of dimension 3

In this section, consider an irreducible normal quasi-projective variety X of
dimension 3 such that the singular locus Xsing is either a finite number of
points or a curve. For varieties of lower dimensions, see [Han14].
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Example 5.1.1 Let X be an irreducible projective variety of dimension 3
over an algebracally closed field k. If the singular locus Xsing is a connected
smooth curve, consider the resolution of singularities along Xsing. This in-
duces a Cartesian square

E X̃

Xsing X

p

i

and we suppose that E = p−1(Xsing) is a connected smooth surface. There-
fore, we have a cubical hyperresolution

X2 = E X1 = X̃
∐
Xsing Xa

with cohomological cycle complex

Zr(X•)
∗ = Cone

{
Zr(X̃, •)⊕ Zr(Xsing, •)→ Zr(E, •)

}
[−1].

In codimension r = 1, we have a long exact sequence

0→ CHC1(X, 1)→ Γ(X̃,O∗
X̃

)⊕ Γ(Xsing,O
∗
Xsing

)→ Γ(E,O∗E)→

CHC1(X)→ CH1(X̃)⊕ CH1(Xsing)→ CH1(E)→ CHC1(X,−1)→ 0.

Under the identification (2.2.4), the above sequence gives us the following:

0→ CHC1(X, 1)→ k∗ ⊕ k∗ → k∗ → CHC1(X)→

→ Pic(X̃)⊕ Pic(Xsing)→ Pic(E)→ CHC1(X,−1)→ 0.

Then CHC1(X,m) = 0 for m 6= −1, 0, 1, and CHC1(X, 1) = k∗. It is also
immediate to see that

CHC1(X) = Ker{Pic(X̃)⊕ Pic(Xsing)→ Pic(E)}.

By the same argument we have

CHC1(X,−1) = Coker{Pic(X̃)⊕ Pic(Xsing)→ Pic(E)}.

In particular, if E is a vector bundle of rank n + 1 over Xsing with E =
P(E)→ Xsing its projectivization, then

Pic(E) ∼= Pic(Xsing)⊕ Z.

In this case, the group CHC1(X) can be seen as:

CHC1(X) ∼= Ker{Pic(X̃)→ Z}

and CHC1(X,−1) is a torsion group.
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Example 5.1.2 Let X be a singular projective variety of dimension 3, with
singular locus Xsing = {p}. Let p : X̃ → X be a desingularization of X such
that E = p−1(Xsing) is a normal crossing divisor. Then we have a Cartesian
square

E X̃

Xsing X

p

this is a 2-resolution of X. This desingularization extends to a cubical
hyperresolution by resolving E → Xsing, but in this caseXsing is non-singular
and the process continues via a 2-resolution of E. This process reduces the
study of motivic cohomology and higher Chow groups to E. By definition,
CHCr(X,m) is the mth homology of the complex

Zr(X•, •)∗ := Cone{Zr(X̃, •)⊕ Zr(Xsing, •)→ Zr(E, •)∗}[−1].

Then, we have a long exact sequence

· · · CH1(X̃, 3)⊕ CH1(Xsing, 3) CHC1(E, 3) CHC1(X, 2)

CH1(X̃, 2)⊕ CH1(Xsing, 2) CHC1(E, 2) CHC1(X, 1)

CH1(X̃, 1)⊕ CH1(Xsing, 1) CHC1(E, 1) CHC1(X)

CH1(X̃)⊕ CH1(Xsing) CHC1(E) CHC1(X,−1)

CH1(X̃,−1)⊕ CH1(Xsing,−1) CHC1(E,−1) CHC1(X,−2) · · ·

(5.1)
The first observation is that CHC1(E,m) ∼= CHC1(X,m−1) for m 6= 0, 1, 2.
To compute Zr(E, •)∗ consider the following. A strict normal crossing divi-
sor E =

⋃N
i=1Ei, with each component an irreducible and projective surface.

Further suppose that E is a tree, i.e. the associated graph is a tree. Let
Eij = Ei ∩ Ej be the intersection of any two irreducible components of E,
so the intersections Eij are curves. Let E[1] :=

∐
Ei and E[2] :=

∐
i<j Eij .

In our case, this description defines a simplicial scheme over E:∐
Ei ∩ Ej

∐
Ei E.a

The associated cohomological cycle complex is

Zr(E, •)∗ := Cone•
{
Zr(E[1], •)

φ−→ Zr(E[2], •)
}

[−1].
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Since E[0] and E[1] are projective and smooth, we have a long exact sequence
of the form:

0→ CHC1(E, 1)→ CH1(E[0], 1)
φ∗−→ CH1(E[1], 1)→

CHC1(E)→ CH1(E[0])
φ∗−→ CH1(E[1])→ CHC1(E,−1)→ 0. (5.2)

The associated graph Γ of E is the graph consisting of the vertices corre-
sponding to the components Ei, and the edges corresponding to intersections
Eij = Ei ∩ Ej . The resulting graph Γ is connected since E connected. The
cochain complex C•(Γ) is the complex of two terms d : C0(Γ) → C1(Γ),
where Ci(Γ) = Hom(Ci(Γ),Z) with i = 0, 1, is free abelian group with dual
basis to C0(Γ) and C1(Γ) (generated by {Ei} and {Eij} respectively), and
d(ei) =

∑
i<j eij −

∑
m<i emi. By definition H∗(Γ) is the cohomology of the

complex C•(Γ) [Han14]. With this description, we have the following result:

Proposition 5.1.3 Let E be a connected simple normal crossing divisor
such that the associated graph is a tree, and H1(Γ) = 0. Then, CHC1(E,m) =
0 for m 6= −1, 0, 1, and CHC1(E, 1) = k∗.

Proof. Under the identification CH1(E[0]) = C0(Γ)⊗ k∗ and CH1(E[1]) =
C1(Γ) ⊗ k∗, the previous exact sequence (5.2) is transformed into the fol-
lowing:

0→ CHC1(E, 1)→ C0(Γ)⊗ k∗ φ∗−→ C1(Γ)⊗ k∗

→ CHC1(E)→ Pic(E[0])
φ∗−→ Pic(E[1])→ CHC1(E,−1)→ 0.

Since H1(Γ) = 0, the morphism φ∗ : C0(Γ)⊗ k∗ → C1(Γ)⊗ k∗ is surjective

Corollary 5.1.4 Let X be an irreducible normal projective variety of di-
mension 3 over an algebraically closed field k of characteristic zero. Suppose
further that under the resolution of singularities, E is as in the above propo-
sition. Then CHC1(X,m) = 0 for m 6= −2,−1, 0, 1, CHC1(X, 1) = k∗, and
there is an exact sequence

0→ CHC1(X, 1)→ k∗ ⊕ k∗ → k∗ → CHC1(X)→ Pic(X̃)→

CHC1(E)→ CHC1(X,−1)→ 0→ CHC1(E,−1)→ CHC1(X,−2)→ 0

Proof. By (5.1.3) and previous results, the long exact sequence (5.1) can
be reduced to the following exact sequence:
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0→ CHC1(X, 1)→ CH1(X̃, 1)⊕ CH1(Xsing, 1)→ CHC1(E, 1)→

→ CHC1(X)→ CH1(X̃)→ CHC1(E)→ CHC1(X,−1)→

→ CH1(X̃,−1)⊕ CH1(Xsing,−1)→ CHC1(E,−1)→ CHC1(X,−2)→ 0

Since the higher Chow groups of smooth varieties vanish in negative degrees,
and Pic(Xsing) = 0, the corollary follows immediately. �

5.2. Varieties of higher dimension

Let X be a complex projective variety of dimension d, with singular locus
Xsing smooth, irreducible of codim(Xsing) ≥ 2. Consider a resolution of

singularities p : X̃ → X, where E = p−1(Xsing) is a simple normal crossing
divisor such that the graph associated is a tree. This defines a 2-resolution
E ⇒ X̃

∐
Xsing → X. Again, the cohomological cycle complex is given by

Zr(X•, •)∗ := Cone{Zr(X̃, •)⊕ Zr(Xsing, •)→ Zr(E, •)∗}[−1].

And there exists an exact sequence

→ CHC1(X,m)→ CHC1(X̃,m)⊕ CHC1(Xsing,m)→ CHC1(E,m)→

Then the analysis is reduced to E. Since the associated graph to E is a tree
with H1(Γ) = 0, then CHC1(E,m) = 0 for m 6= −1, 0, 1, and CHC1(E, 1) =
k∗. It immediately follows that CHC1(X, 1) = k∗.

Proposition 5.2.1 There is an exact sequence:

0→ CHC1(X, 1)→ k∗ ⊕ k∗ → k∗ → CHC1(X)→ Pic(X̃)⊕ Pic(Xsing)

→ CHC1(E)→ CHC1(X,−1)→ 0→ CHC1(E,−1)→ CHC1(X,−2)→ 0

with CHC1(X,m) = 0 if m 6= −2,−1, 0, 1, and CHC1(X, 1) = k∗.
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